IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v34y2020i4d10.1007_s11269-020-02512-9.html
   My bibliography  Save this article

Performance Evaluation of Improved Symbiotic Organism Search Algorithm for Estimation of Solute Transport in Rivers

Author

Listed:
  • Mohamad Reza Madadi

    (University of Jiroft)

  • Saeid Akbarifard

    (Shahid Chamran University of Ahvaz)

  • Kourosh Qaderi

    (Shahid Bahonar University of Kerman)

Abstract

Accurate estimation of solute transport has significant importance in water resources and environmental engineering. Among the various types of mathematical formulation for modeling of solute transport, the transient storage model has been widely applied by different researchers as an appropriate model. In this study, an improved version of symbiotic organism search (SOS) algorithm was used to estimate the parameters of transient storage model. A large set of data from natural rivers of USA was collected from the literature and used for derivation and validation of the algorithm. The performance of the algorithm was evaluated by standard statistical indices. Accordingly, the values of R and RMSE for transient storage model parameters (Kf, T and ε) were obtained 0.922 and 30.62 (for Kf), 0.596 and 5645 (for T) and, 0.643 and 0.019 (for ε) for whole dataset. In addition, the results of this study were compared with those obtained by different reserachers via other models. The results indicate the higher capability of improved SOS algorithim compared to the others in estimating the transient storage model parameters.

Suggested Citation

  • Mohamad Reza Madadi & Saeid Akbarifard & Kourosh Qaderi, 2020. "Performance Evaluation of Improved Symbiotic Organism Search Algorithm for Estimation of Solute Transport in Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(4), pages 1453-1464, March.
  • Handle: RePEc:spr:waterr:v:34:y:2020:i:4:d:10.1007_s11269-020-02512-9
    DOI: 10.1007/s11269-020-02512-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-020-02512-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-020-02512-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiangtao Li & Huawen Liu & Minghao Yin, 2013. "Differential Evolution for Prediction of Longitudinal Dispersion Coefficients in Natural Streams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5245-5260, December.
    2. Rajeev Sahay, 2012. "Predicting Transient Storage Model Parameters of Rivers by Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3667-3685, October.
    3. Rajeev Sahay, 2012. "Erratum to: Predicting Transient Storage Model Parameters of Rivers by Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3687-3687, October.
    4. Tae Cheong & Bassam Younis & Il Seo, 2007. "Estimation of key parameters in model for solute transport in rivers and streams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(7), pages 1165-1186, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Reza Sharifi & Saeid Akbarifard & Kourosh Qaderi & Mohamad Reza Madadi, 2021. "Developing MSA Algorithm by New Fitness-Distance-Balance Selection Method to Optimize Cascade Hydropower Reservoirs Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 385-406, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gokmen Tayfur, 2017. "Modern Optimization Methods in Water Resources Planning, Engineering and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3205-3233, August.
    2. Jianzhong Zhou & Shuo Ouyang & Xuemin Wang & Lei Ye & Hao Wang, 2014. "Multi-Objective Parameter Calibration and Multi-Attribute Decision-Making: An Application to Conceptual Hydrological Model Calibration," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 767-783, February.
    3. Mohamad Javad Alizadeh & Davoud Ahmadyar & Ali Afghantoloee, 2017. "Improvement on the Existing Equations for Predicting Longitudinal Dispersion Coefficient," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(6), pages 1777-1794, April.
    4. Rajeev Sahay, 2012. "Predicting Transient Storage Model Parameters of Rivers by Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3667-3685, October.
    5. Hazi Azamathulla & Aminuddin Ghani, 2011. "Genetic Programming for Predicting Longitudinal Dispersion Coefficients in Streams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1537-1544, April.
    6. Hossien Riahi-Madvar & Majid Dehghani & Akram Seifi & Vijay P. Singh, 2019. "Pareto Optimal Multigene Genetic Programming for Prediction of Longitudinal Dispersion Coefficient," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 905-921, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:34:y:2020:i:4:d:10.1007_s11269-020-02512-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.