IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v31y2017i6d10.1007_s11269-017-1611-z.html
   My bibliography  Save this article

Improvement on the Existing Equations for Predicting Longitudinal Dispersion Coefficient

Author

Listed:
  • Mohamad Javad Alizadeh

    (K.N. Toosi University of Technology)

  • Davoud Ahmadyar

    (K.N. Toosi University of Technology)

  • Ali Afghantoloee

    (Universite Laval)

Abstract

Accurate prediction of longitudinal dispersion coefficient (K) is a key element in studying of pollutant transport in rivers when the full cross sectional mixing has occurred. In this regard, several research studies have been carried out and different equations have been proposed. The predicted values of K obtained by different equations showed a great amount of uncertainty due to the complexity of the phenomenon. Therefore, there is still a need to make an improvement on the existing predictive models. In this study, a multi-objective particle swarm optimization (PSO) technique was used to derive new equations for predicting longitudinal dispersion coefficient in natural rivers. To do this, extensive field data, including hydraulic and geometrical characteristics of different rivers were applied. The results of this study were compared with those of the previous studies using the statistical error measures. The comparison revealed that the proposed model is superior to the previous ones. According to this study, PSO algorithm can be applied to improve the performance of the predictive equations by finding optimum values of the coefficients. The proposed model can be successfully applied to estimate the longitudinal dispersion coefficient for a wide range of rivers’ characteristics.

Suggested Citation

  • Mohamad Javad Alizadeh & Davoud Ahmadyar & Ali Afghantoloee, 2017. "Improvement on the Existing Equations for Predicting Longitudinal Dispersion Coefficient," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(6), pages 1777-1794, April.
  • Handle: RePEc:spr:waterr:v:31:y:2017:i:6:d:10.1007_s11269-017-1611-z
    DOI: 10.1007/s11269-017-1611-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-017-1611-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-017-1611-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Bo & Wang, Ling & Jin, Yi-Hui & Tang, Fang & Huang, De-Xian, 2005. "Improved particle swarm optimization combined with chaos," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 1261-1271.
    2. Xiangtao Li & Huawen Liu & Minghao Yin, 2013. "Differential Evolution for Prediction of Longitudinal Dispersion Coefficients in Natural Streams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5245-5260, December.
    3. Hazi Azamathulla & Aminuddin Ghani, 2011. "Genetic Programming for Predicting Longitudinal Dispersion Coefficients in Streams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1537-1544, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gokmen Tayfur, 2017. "Modern Optimization Methods in Water Resources Planning, Engineering and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3205-3233, August.
    2. Ivona Brajević & Jelena Ignjatović, 2019. "An upgraded firefly algorithm with feasibility-based rules for constrained engineering optimization problems," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2545-2574, August.
    3. H. Azamathulla & Robert Jarrett, 2013. "Use of Gene-Expression Programming to Estimate Manning’s Roughness Coefficient for High Gradient Streams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 715-729, February.
    4. Hossein Lotfi, 2022. "A Multiobjective Evolutionary Approach for Solving the Multi-Area Dynamic Economic Emission Dispatch Problem Considering Reliability Concerns," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
    5. He, Qie & Wang, Ling & Liu, Bo, 2007. "Parameter estimation for chaotic systems by particle swarm optimization," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 654-661.
    6. Adel Taieb & Moêz Soltani & Abdelkader Chaari, 2017. "Parameter Optimization of MIMO Fuzzy Optimal Model Predictive Control By APSO," Complexity, Hindawi, vol. 2017, pages 1-11, October.
    7. Yang, Dixiong & Li, Gang & Cheng, Gengdong, 2007. "On the efficiency of chaos optimization algorithms for global optimization," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1366-1375.
    8. Hong, Wei-Chiang, 2010. "Application of chaotic ant swarm optimization in electric load forecasting," Energy Policy, Elsevier, vol. 38(10), pages 5830-5839, October.
    9. Jinn-Tong Chiu & Ching-Hai Lin, 2016. "A Modified Particle Swarm Optimization Based on Eagle Foraging Behavior," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(03), pages 703-727, May.
    10. Amir Hamzeh Haghiabi, 2017. "Modeling River Mixing Mechanism Using Data Driven Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 811-824, February.
    11. Majid Niazkar & Nasser Talebbeydokhti & Seied Hosein Afzali, 2019. "Novel Grain and Form Roughness Estimator Scheme Incorporating Artificial Intelligence Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 757-773, January.
    12. Anouar Farah & Akram Belazi & Khalid Alqunun & Abdulaziz Almalaq & Badr M. Alshammari & Mohamed Bechir Ben Hamida & Rabeh Abbassi, 2021. "A New Design Method for Optimal Parameters Setting of PSSs and SVC Damping Controllers to Alleviate Power System Stability Problem," Energies, MDPI, vol. 14(21), pages 1-26, November.
    13. Mohammad Aghababaei & Amir Etemad-Shahidi & Ebrahim Jabbari & Milad Taghipour, 2017. "Estimation of Transverse Mixing Coefficient in Straight and Meandering Streams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3809-3827, September.
    14. Peng, Bo & Liu, Bo & Zhang, Fu-Yi & Wang, Ling, 2009. "Differential evolution algorithm-based parameter estimation for chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2110-2118.
    15. Alatas, Bilal & Akin, Erhan & Ozer, A. Bedri, 2009. "Chaos embedded particle swarm optimization algorithms," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1715-1734.
    16. Sadeghian, Hamidreza & Wang, Zhifang, 2020. "A novel impact-assessment framework for distributed PV installations in low-voltage secondary networks," Renewable Energy, Elsevier, vol. 147(P1), pages 2179-2194.
    17. Borghi, Giacomo & Grassi, Sara & Pareschi, Lorenzo, 2023. "Consensus based optimization with memory effects: Random selection and applications," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    18. Jui-Ho Chen & Her-Terng Yau & Weir Hung, 2014. "Design and Study on Sliding Mode Extremum Seeking Control of the Chaos Embedded Particle Swarm Optimization for Maximum Power Point Tracking in Wind Power Systems," Energies, MDPI, vol. 7(3), pages 1-15, March.
    19. J Sreekanth & Bithin Datta, 2014. "Stochastic and Robust Multi-Objective Optimal Management of Pumping from Coastal Aquifers Under Parameter Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 2005-2019, May.
    20. Alfi, Alireza, 2012. "Chaos suppression on a class of uncertain nonlinear chaotic systems using an optimal H∞ adaptive PID controller," Chaos, Solitons & Fractals, Elsevier, vol. 45(3), pages 351-357.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:31:y:2017:i:6:d:10.1007_s11269-017-1611-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.