IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v34y2020i3d10.1007_s11269-019-02406-5.html
   My bibliography  Save this article

Attaining Sustainable Water Resource Utilization in Lake Basins Using Progressive Operational Scenario Analysis

Author

Listed:
  • Jiayu Peng

    (Chinese Research Academy of Environmental Sciences
    Beijing Normal University)

  • Binghui Zheng

    (Chinese Research Academy of Environmental Sciences)

  • Zhaosheng Chu

    (Chinese Research Academy of Environmental Sciences)

  • Xing Wang

    (Chinese Research Academy of Environmental Sciences)

Abstract

There is a severe conflict between water resource exploitation and protection of the aquatic environment of lakes with rapid urbanization. Sustainable water resource utilization is urgent for sustainable development. The present study introduced a progressive operational scenario analysis (POSA) method for water resource regulation in lake basins. The application processes of POSA in Dianchi Lake, Erhai Lake and Fuxian Lake were described in detail. The effectiveness of the POSA method and scenario analysis method in achieving sustainable water resource utilization were compared and analysed, and the improvement in the efficiency of water resource utilization in lake basins due to the two methods was discussed. The results showed that implementation of POSA can effectively achieve sustainable water resource utilization in Dianchi Lake, Erhai Lake and Fuxian Lake and reduce the aquatic environmental pressure. Compared with business-as-usual, this method reduced the water use efficiency indicators of Dianchi Lake, Erhai Lake and Fuxian Lake by 2%–8%, 1%–25% and 8%–35%, respectively, and the water environmental pressure in Dianchi Lake, Erhai Lake and Fuxian Lake decreased by 28.51%, 29.70% and 69.39%, respectively. POSA has been proven to be an excellent tool for managing the aquatic environments and regulating water resources in lake basins.

Suggested Citation

  • Jiayu Peng & Binghui Zheng & Zhaosheng Chu & Xing Wang, 2020. "Attaining Sustainable Water Resource Utilization in Lake Basins Using Progressive Operational Scenario Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 887-904, February.
  • Handle: RePEc:spr:waterr:v:34:y:2020:i:3:d:10.1007_s11269-019-02406-5
    DOI: 10.1007/s11269-019-02406-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-02406-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-02406-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mathis Loïc Messager & Bernhard Lehner & Günther Grill & Irena Nedeva & Oliver Schmitt, 2016. "Estimating the volume and age of water stored in global lakes using a geo-statistical approach," Nature Communications, Nature, vol. 7(1), pages 1-11, December.
    2. Hussain, M. Iftikhar & Muscolo, Adele & Farooq, Muhammad & Ahmad, Waqar, 2019. "Sustainable use and management of non-conventional water resources for rehabilitation of marginal lands in arid and semiarid environments," Agricultural Water Management, Elsevier, vol. 221(C), pages 462-476.
    3. A. Alamanos & D. Latinopoulos & G. Papaioannou & N. Mylopoulos, 2019. "Integrated Hydro-Economic Modeling for Sustainable Water Resources Management in Data-Scarce Areas: The Case of Lake Karla Watershed in Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(8), pages 2775-2790, June.
    4. Daniel P. Bigelow & Andrew J. Plantinga & David J. Lewis & Christian Langpap, 2017. "How Does Urbanization Affect Water Withdrawals? Insights from an Econometric-Based Landscape Simulation," Land Economics, University of Wisconsin Press, vol. 93(3), pages 413-436.
    5. Valeria Mijares & Margaret Gitau & David R. Johnson, 2019. "A Method for Assessing and Predicting Water Quality Status for Improved Decision-Making and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 509-522, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Wu & Xia Liu & Zhi Yang & Yang Yu & Xiaoyi Ma, 2023. "Is Climate Dominating the Spatiotemporal Patterns of Water Yield?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 321-339, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ya Li & Hanqin Tian & Yuanzhi Yao & Hao Shi & Zihao Bian & Yu Shi & Siyuan Wang & Taylor Maavara & Ronny Lauerwald & Shufen Pan, 2024. "Increased nitrous oxide emissions from global lakes and reservoirs since the pre-industrial era," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Dongmei Feng & Colin J. Gleason & Peirong Lin & Xiao Yang & Ming Pan & Yuta Ishitsuka, 2021. "Recent changes to Arctic river discharge," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. J. M. Aishwarya & R. Vidhya, 2023. "Study on the Efficiency of a Hydroponic Treatment for Removing Organic Loading from Wastewater and Its Application as a Nutrient for the “ Amaranthus campestris ” Plant for Sustainability," Sustainability, MDPI, vol. 15(10), pages 1-13, May.
    4. Regmi, Rupesh & Zhang, Zhuo & Zhang, Hongpeng, 2023. "Entrepreneurship strategy, natural resources management and sustainable performance: A study of an emerging market," Resources Policy, Elsevier, vol. 86(PB).
    5. Ghalia Saleem Aljeddani, 2022. "Reusing Sewage Effluent in Greening Urban Areas: A Case Study of: Southern Jeddah, Saudi Arabia," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    6. Weijia Wang & Kun Shi & Xiwen Wang & Yunlin Zhang & Boqiang Qin & Yibo Zhang & R. Iestyn Woolway, 2024. "The impact of extreme heat on lake warming in China," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    7. Jian Zhou & Peter R. Leavitt & Kevin C. Rose & Xiwen Wang & Yibo Zhang & Kun Shi & Boqiang Qin, 2023. "Controls of thermal response of temperate lakes to atmospheric warming," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Qianhan Wu & Linghong Ke & Jida Wang & Tamlin M. Pavelsky & George H. Allen & Yongwei Sheng & Xuejun Duan & Yunqiang Zhu & Jin Wu & Lei Wang & Kai Liu & Tan Chen & Wensong Zhang & Chenyu Fan & Bin Yon, 2023. "Satellites reveal hotspots of global river extent change," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Mike Spiliotis & Dionissis Latinopoulos & Lampros Vasiliades & Kyriakos Rafailidis & Eleni Koutsokera & Ifigenia Kagalou, 2022. "Flexible Goal Programming for Supporting Lake Karla’s (Greece) Sustainable Operation," Sustainability, MDPI, vol. 14(7), pages 1-19, April.
    10. Wrenn, Douglas H. & Klaiber, Allen & Newburn, David, 2017. "Price-Based Policies for Managing Residential Land Development: Impacts on Water Quality," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258578, Agricultural and Applied Economics Association.
    11. Dong Liu & Kun Shi & Peng Chen & Nuoxiao Yan & Lishan Ran & Tiit Kutser & Andrew N. Tyler & Evangelos Spyrakos & R. Iestyn Woolway & Yunlin Zhang & Hongtao Duan, 2024. "Substantial increase of organic carbon storage in Chinese lakes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Štefan Bojnec & Umar Daraz & Younas Khan, 2024. "Harvesting Sunlight: The Promise of Agro-Photovoltaic Fusion Systems for Sustainable Agriculture and Renewable Energy Generation," Energies, MDPI, vol. 17(13), pages 1-29, July.
    13. Zhenjie Du & Shuang Zhao & Yingjun She & Yan Zhang & Jingjing Yuan & Shafeeq Ur Rahman & Xuebin Qi & Yue Xu & Ping Li, 2022. "Effects of Different Wastewater Irrigation on Soil Properties and Vegetable Productivity in the North China Plain," Agriculture, MDPI, vol. 12(8), pages 1-13, July.
    14. Andrew J Tanentzap & Samuel Cottingham & Jérémy Fonvielle & Isobel Riley & Lucy M Walker & Samuel G Woodman & Danai Kontou & Christian M Pichler & Erwin Reisner & Laurent Lebreton, 2021. "Microplastics and anthropogenic fibre concentrations in lakes reflect surrounding land use," PLOS Biology, Public Library of Science, vol. 19(9), pages 1-18, September.
    15. Mu, Jianhong E. & McCarl, Bruce A. & Sleeter, Benjamin & Abatzoglou, John T. & Zhang, Hongliang, 2018. "Adaptation with climate uncertainty: An examination of agricultural land use in the United States," Land Use Policy, Elsevier, vol. 77(C), pages 392-401.
    16. Muhammad Iftikhar Hussain & Majida Naeem & Zafar Iqbal Khan & Shahzad Akhtar & Muhammad Nadeem & Maha Abdallah Alnuwaiser & Kafeel Ahmad & Oscar Vicente & Hsi-Hsien Yang, 2022. "Cadmium (Cd) and Copper (Cu) Exposure and Bioaccumulation Arrays in Farm Ruminants: Impact of Forage Ecotypes, Ecological Sites and Body Organs," Sustainability, MDPI, vol. 14(19), pages 1-14, October.
    17. Björn Nyberg & Gijs Henstra & Rob L. Gawthorpe & Rodmar Ravnås & Juha Ahokas, 2023. "Global scale analysis on the extent of river channel belts," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Babak Zolghadr-Asli & Maedeh Enayati & Hamid Reza Pourghasemi & Mojtaba Naghdyzadegan Jahromi & John P. Tiefenbacher, 2021. "A linear/non-linear hybrid time-series model to investigate the depletion of inland water bodies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10727-10742, July.
    19. Shi, Jingxin & Huang, Wenping & Han, Hongjun & Xu, Chunyan, 2021. "Pollution control of wastewater from the coal chemical industry in China: Environmental management policy and technical standards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    20. Yiding Wang & Yaning Chen & Weili Duan & Li Jiao, 2022. "Evaluation of Sustainable Water Resource Use in the Tarim River Basin Based on Water Footprint," Sustainability, MDPI, vol. 14(17), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:34:y:2020:i:3:d:10.1007_s11269-019-02406-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.