IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i8d10.1007_s11269-019-02259-y.html
   My bibliography  Save this article

Water Resources Allocation in Transboundary River Basins Based on a Game Model Considering Inflow Forecasting Errors

Author

Listed:
  • Jisi Fu

    (Hohai University)

  • Ping-an Zhong

    (Hohai University
    Hohai University)

  • Juan Chen

    (Hohai University
    Hohai University)

  • Bin Xu

    (Hohai University)

  • Feilin Zhu

    (Hohai University)

  • Yu Zhang

    (Hohai University)

Abstract

Dynamic transboundary water resources allocation based on inflow prediction results is an important task for water resources management in river basins. This paper takes the watershed management agency as the leader and the associated area as the follower, and proposes a two-level asymmetric Nash-Harsanyi Leader-Follower game model considering inflow forecasting errors. In the proposed model, the Monte Carlo method is used to analyze the uncertainty of various stakeholder allocation results and the response regularity to the total water resource uncertainty. The quantitative relationship between the allocation results of stakeholders and the mean and standard deviation of total water resource uncertainty is subsequently established. The Huaihe River basin in China is selected as a case study. The results show the following: (1) the water allocated to the watershed management agency and three provinces has a normal distribution when the inflow forecasting error obeys the normal distribution; (2) the sum of the mean of the water allocated to stakeholders equals the mean of the forecast water resource and the sum of the standard deviations of the water allocated to stakeholders equals the standard deviation of the forecast water resource; (3) the mean and standard deviation of the allocation results have a good linear relationship with the mean and standard deviation of forecast water resource; (4) the distribution parameters of the stakeholder allocation results can be directly derived from the distribution parameters of the forecast information, thus aiding the stakeholders in making decisions and improving the practical value of the method.

Suggested Citation

  • Jisi Fu & Ping-an Zhong & Juan Chen & Bin Xu & Feilin Zhu & Yu Zhang, 2019. "Water Resources Allocation in Transboundary River Basins Based on a Game Model Considering Inflow Forecasting Errors," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(8), pages 2809-2825, June.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:8:d:10.1007_s11269-019-02259-y
    DOI: 10.1007/s11269-019-02259-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-02259-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-02259-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dan Yan & Mingtian Yao & Fulco Ludwig & Pavel Kabat & He Qing Huang & Ronald W. A. Hutjes & Saskia E. Werners, 2018. "Exploring Future Water Shortage for Large River Basins under Different Water Allocation Strategies," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 3071-3086, July.
    2. Madani, Kaveh & Dinar, Ariel, 2012. "Non-cooperative institutions for sustainable common pool resource management: Application to groundwater," Ecological Economics, Elsevier, vol. 74(C), pages 34-45.
    3. Cem P. Cetinkaya & Mert Can Gunacti, 2018. "Multi-Criteria Analysis of Water Allocation Scenarios in a Water Scarce Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2867-2884, June.
    4. Mehmet Kucukmehmetoglu & Jean-Michel Guldmann, 2004. "International Water Resources Allocation and Conflicts: The Case of the Euphrates and Tigris," Environment and Planning A, , vol. 36(5), pages 783-801, May.
    5. Dagmawi Mulugeta Degefu & Weijun He & Liang Yuan & Jian Hua Zhao, 2016. "Water Allocation in Transboundary River Basins under Water Scarcity: a Cooperative Bargaining Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4451-4466, September.
    6. Ali Reza Nafarzadegan & Hassan Vagharfard & Mohammad Reza Nikoo & Ahmad Nohegar, 2018. "Socially-Optimal and Nash Pareto-Based Alternatives for Water Allocation under Uncertainty: an Approach and Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 2985-3000, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Liu & Xuefeng Sang & Jiaxuan Chang & Yang Zheng, 2021. "Multi-Model Coupling Water Demand Prediction Optimization Method for Megacities Based on Time Series Decomposition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4021-4041, September.
    2. Sheng He & Xuefeng Sang & Junxian Yin & Yang Zheng & Heting Chen, 2023. "Short-term Runoff Prediction Optimization Method Based on BGRU-BP and BLSTM-BP Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 747-768, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianan Qin & Xiang Fu & Shaoming Peng & Yuni Xu & Jie Huang & Sha Huang, 2019. "Asymmetric Bargaining Model for Water Resource Allocation over Transboundary Rivers," IJERPH, MDPI, vol. 16(10), pages 1-23, May.
    2. Khadije Norouzi Khatiri & Mohammad Hossein Niksokhan & Amin Sarang & Asghar Kamali, 2020. "Coupled Simulation-Optimization Model for the Management of Groundwater Resources by Considering Uncertainty and Conflict Resolution," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(11), pages 3585-3608, September.
    3. S W Tsang & C Y Jim, 2011. "Game-Theory Approach for Resident Coalitions to Allocate Green-Roof Benefits," Environment and Planning A, , vol. 43(2), pages 363-377, February.
    4. Mahdi Zarghami & Nasim Safari & Ferenc Szidarovszky & Shafiqul Islam, 2015. "Nonlinear Interval Parameter Programming Combined with Cooperative Games: a Tool for Addressing Uncertainty in Water Allocation Using Water Diplomacy Framework," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4285-4303, September.
    5. Karner, Katrin & Schmid, Erwin & Schneider, Uwe A. & Mitter, Hermine, 2021. "Computing stochastic Pareto frontiers between economic and environmental goals for a semi-arid agricultural production region in Austria," Ecological Economics, Elsevier, vol. 185(C).
    6. R. Roozbahani & B. Abbasi & S. Schreider, 2015. "Optimal allocation of water to competing stakeholders in a shared watershed," Annals of Operations Research, Springer, vol. 229(1), pages 657-676, June.
    7. Matteo Zavalloni & Meri Raggi & Davide Viaggi, 2016. "Assessing Collective Measures in Rural Policy: The Effect of Minimum Participation Rules on the Distribution of Benefits from Irrigation Infrastructure," Sustainability, MDPI, vol. 9(1), pages 1-19, December.
    8. R. Roozbahani & S. Schreider & B. Abbasi, 2013. "Economic Sharing of Basin Water Resources between Competing Stakeholders," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2965-2988, June.
    9. Du Bois, Rodrigo Salcedo & Macias, Miguel Angel Gutierrez, 2013. "Cooperation makes it happen? Groundwater management in Aguascalientes, Mexico: An experimental approach," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 151139, Agricultural and Applied Economics Association.
    10. Wegmann, Johannes & Mußhoff, Oliver, 2019. "Groundwater management institutions in the face of rapid urbanization – Results of a framed field experiment in Bengaluru, India," Ecological Economics, Elsevier, vol. 166(C), pages 1-1.
    11. Wen-jing Niu & Zhong-kai Feng & Yu-rong Li & Shuai Liu, 2021. "Cooperation Search Algorithm for Power Generation Production Operation Optimization of Cascade Hydropower Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2465-2485, June.
    12. Xin Gao & Juqin Shen & Weijun He & Fuhua Sun & Zhaofang Zhang & Xin Zhang & Chengcai Zhang & Yang Kong & Min An & Liang Yuan & Xiaocang Xu, 2019. "Changes in Ecosystem Services Value and Establishment of Watershed Ecological Compensation Standards," IJERPH, MDPI, vol. 16(16), pages 1-30, August.
    13. Bhargava, Anil K. & Lybbert, Travis J. & Spielman, David J., 2014. "The Public Benefits of Private Technology Adoption," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170682, Agricultural and Applied Economics Association.
    14. Dagmawi Mulugeta Degefu & Weijun He & Liang Yuan & An Min & Qi Zhang, 2018. "Bankruptcy to Surplus: Sharing Transboundary River Basin’s Water under Scarcity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2735-2751, June.
    15. Mehmet Kucukmehmetoglu & Abdurrahman Geymen, 2012. "Transboundary Water Resources Allocation Under Various Parametric Conditions: The Case Of The Euphrates & Tigris River Basin," ERSA conference papers ersa12p613, European Regional Science Association.
    16. Xiqin Wang & Yuan Zhang & Yong Zeng & Changming Liu, 2013. "Resolving Trans-jurisdictional Water Conflicts by the Nash Bargaining Method: A Case Study in Zhangweinan Canal Basin in North China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1235-1247, March.
    17. Mehmet Kucukmehmetoglu, 2011. "AN INTEGRATIVE APPROACH BETWEEN GAME THEORY AND PARETO FRONTIER CONCEPTS FOR THE TRANSBOUNDARY WATER RESOURCES ALLOCATIONS: Case of the Euphrates and Tigris," ERSA conference papers ersa10p899, European Regional Science Association.
    18. Kaiyong Wang & Pengyan Zhang & Bo Pang, 2018. "Process and Mechanism of Agricultural Irrigation Benefit Allocation Coefficient Based on Emergy Analysis—A Case Study of Henan, China," Sustainability, MDPI, vol. 10(12), pages 1-15, November.
    19. R. Roozbahani & B. Abbasi & S. Schreider & J. Iversen, 2021. "Dam Location-Allocation under Multiple Hydrological Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 993-1009, February.
    20. Mehdi Ketabchy, 2021. "Investigating the Impacts of the Political System Components in Iran on the Existing Water Bankruptcy," Sustainability, MDPI, vol. 13(24), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:8:d:10.1007_s11269-019-02259-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.