IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i1d10.1007_s11269-018-2104-4.html
   My bibliography  Save this article

Water–Health Nexus: Modeling the Pathways and Barriers to Water-Related Diseases

Author

Listed:
  • Neil S. Grigg

    (Colorado State University)

Abstract

Under pressure from climate change and other drivers, the risks of water-related infectious and chronic diseases seem poised to increase. Addressing these risks requires shared work in the fields of public health and water resources management. To help in risk assessment, the paper presents a comprehensive conceptual model of water-related health effects and the potential barriers that can be established by water management actions. The model does not indicate unique solution strategies because multiple water management factors cause multiple types of water-related diseases. It uses the water-health nexus to conceptualize the pathways to diseases and help clarify health-related responsibilities for water management and public health officials. Experiences of the U.S. are presented as an exemplar of the links between water management and disease incidence. However, parts of the water management system are not regulated effectively and many countries lack organized utilities and effective water governance.

Suggested Citation

  • Neil S. Grigg, 2019. "Water–Health Nexus: Modeling the Pathways and Barriers to Water-Related Diseases," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 319-335, January.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:1:d:10.1007_s11269-018-2104-4
    DOI: 10.1007/s11269-018-2104-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-2104-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-2104-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David A Keiser & Joseph S Shapiro, 2019. "Consequences of the Clean Water Act and the Demand for Water Quality," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 134(1), pages 349-396.
    2. Homer, J.B. & Hirsch, G.B., 2006. "System dynamics modeling for public health: Background and opportunities," American Journal of Public Health, American Public Health Association, vol. 96(3), pages 452-458.
    3. Bazilian, Morgan & Rogner, Holger & Howells, Mark & Hermann, Sebastian & Arent, Douglas & Gielen, Dolf & Steduto, Pasquale & Mueller, Alexander & Komor, Paul & Tol, Richard S.J. & Yumkella, Kandeh K., 2011. "Considering the energy, water and food nexus: Towards an integrated modelling approach," Energy Policy, Elsevier, vol. 39(12), pages 7896-7906.
    4. Lankoski, Jussi E. & Ollikainen, Markku, 2013. "Innovations in Nonpoint Source Pollution Policy—European Perspectives," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 28(3), pages 1-5.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Pao-Long & Ho, Shu-Ping & Hsu, Chiung-Wen, 2013. "Dynamic simulation of government subsidy policy effects on solar water heaters installation in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 385-396.
    2. Lauri Ahopelto & Noora Veijalainen & Joseph H. A. Guillaume & Marko Keskinen & Mika Marttunen & Olli Varis, 2019. "Can There be Water Scarcity with Abundance of Water? Analyzing Water Stress during a Severe Drought in Finland," Sustainability, MDPI, vol. 11(6), pages 1-18, March.
    3. Meimei Wang & Steffen Flessa, 2020. "Modelling Covid-19 under uncertainty: what can we expect?," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 21(5), pages 665-668, July.
    4. Andrew Chapman & Timothy Fraser & Melanie Dennis, 2019. "Investigating Ties between Energy Policy and Social Equity Research: A Citation Network Analysis," Social Sciences, MDPI, vol. 8(5), pages 1-18, April.
    5. Govindan, Rajesh & Al-Ansari, Tareq, 2019. "Computational decision framework for enhancing resilience of the energy, water and food nexus in risky environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 653-668.
    6. Karen Minyard & Tina A. Smith & Richard Turner & Bobby Milstein & Lori Solomon, 2018. "Community and programmatic factors influencing effective use of system dynamic models," System Dynamics Review, System Dynamics Society, vol. 34(1-2), pages 154-171, January.
    7. Ingrid Boas & Frank Biermann & Norichika Kanie, 2016. "Cross-sectoral strategies in global sustainability governance: towards a nexus approach," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 16(3), pages 449-464, June.
    8. Nicolai V. Kuminoff, 2018. "Can Understanding Spatial Equilibria Enhance Benefit Transfers for Environmental Policy Evaluation?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 69(3), pages 591-608, March.
    9. Lucia de Strasser, 2017. "Calling for Nexus Thinking in Africa’s Energy Planning," ESP: Energy Scenarios and Policy 263161, Fondazione Eni Enrico Mattei (FEEM).
    10. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    11. Amaducci, Stefano & Yin, Xinyou & Colauzzi, Michele, 2018. "Agrivoltaic systems to optimise land use for electric energy production," Applied Energy, Elsevier, vol. 220(C), pages 545-561.
    12. Bianca Cezara Archip & Ioan Banatean-Dunea & Dacinia Crina Petrescu & Ruxandra Malina Petrescu-Mag, 2023. "Determinants of Food Waste in Cluj-Napoca (Romania): A Community-Based System Dynamics Approach," IJERPH, MDPI, vol. 20(3), pages 1-22, January.
    13. Hazhir Rahmandad, 2012. "Impact of Growth Opportunities and Competition on Firm-Level Capability Development Trade-offs," Organization Science, INFORMS, vol. 23(1), pages 138-154, February.
    14. Haisheng Chen & Manhong Shen, 2022. "Do Central Inspections of Environmental Protection Affect the Efficiency of the Green Economy? Evidence from China’s Yangtze River Delta," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
    15. Erika Palmer, 2018. "The Heavy Cost of Care: Systemic Challenges in Norwegian Work Absenteeism," Social Sciences, MDPI, vol. 7(6), pages 1-17, June.
    16. David A. Keiser & Joseph S. Shapiro, 2019. "US Water Pollution Regulation over the Past Half Century: Burning Waters to Crystal Springs?," Journal of Economic Perspectives, American Economic Association, vol. 33(4), pages 51-75, Fall.
    17. White, David J. & Hubacek, Klaus & Feng, Kuishuang & Sun, Laixiang & Meng, Bo, 2018. "The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis," Applied Energy, Elsevier, vol. 210(C), pages 550-567.
    18. González Perea, R. & Camacho Poyato, E. & Rodríguez Díaz, J.A., 2021. "Forecasting of applied irrigation depths at farm level for energy tariff periods using Coactive neuro-genetic fuzzy system," Agricultural Water Management, Elsevier, vol. 256(C).
    19. repec:ags:aaea22:335843 is not listed on IDEAS
    20. Machado, R.L. & Abreu, M.R., 2024. "Multi-objective optimization of the first and second-generation ethanol supply chain in Brazil using the water-energy-food-land nexus approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    21. Joseph S. Shapiro & Reed Walker, 2018. "Why Is Pollution from US Manufacturing Declining? The Roles of Environmental Regulation, Productivity, and Trade," American Economic Review, American Economic Association, vol. 108(12), pages 3814-3854, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:1:d:10.1007_s11269-018-2104-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.