IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i15d10.1007_s11269-019-02421-6.html
   My bibliography  Save this article

Uncertainty in Rating-Curves Due to Manning Roughness Coefficient

Author

Listed:
  • Sajjad M. Vatanchi

    (Ferdowsi University of Mashhad)

  • Mahmoud F. Maghrebi

    (Ferdowsi University of Mashhad)

Abstract

River stage-discharge rating curve are very crucial for flood control and sustainable development of the river basin. The stage and discharge data can be extracted by rating curves. Recently, a new approach based on the concept of isovel contours for estimating the rating curves is introduced by Maghrebi et al. (2016). It uses the geometric properties of the flow section and roughness variations of the boundary. One of the essential parameters in setting up the rating curves is the Manning roughness coefficient. However, the determination of this parameter is accompanied by some uncertainties. In natural rivers, due to heterogeneous of boundary roughness, changing equivalent roughness with the stage will be important. A proper estimation of equivalent roughness in the proposed rating curve can significantly help to reduce the errors of stage-discharge prediction. The total number of investigated equations of equivalent roughness is 30, which are divided into four groups. Each one of these equations is examined in the La Suela and Trent rivers. This study has shown that choosing the right method to determine the equivalent roughness can significantly affect the performance of the model and play a substantial role in the more accurate estimation of the rating curve. The results show that in the La Suela and Trent rivers, roughness variations in banks create significant uncertainty in the estimation of the rating curves.

Suggested Citation

  • Sajjad M. Vatanchi & Mahmoud F. Maghrebi, 2019. "Uncertainty in Rating-Curves Due to Manning Roughness Coefficient," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(15), pages 5153-5167, December.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:15:d:10.1007_s11269-019-02421-6
    DOI: 10.1007/s11269-019-02421-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-02421-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-02421-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Helton, J.C. & Johnson, J.D. & Sallaberry, C.J. & Storlie, C.B., 2006. "Survey of sampling-based methods for uncertainty and sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1175-1209.
    2. Asgeir Petersen-Øverleir & André Soot & Trond Reitan, 2009. "Bayesian Rating Curve Inference as a Streamflow Data Quality Assessment Tool," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(9), pages 1835-1842, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Bahrami Yarahmadi & Abbas Parsaie & Mahmood Shafai-Bejestan & Mostafa Heydari & Marzieh Badzanchin, 2023. "Estimation of Manning Roughness Coefficient in Alluvial Rivers with Bed Forms Using Soft Computing Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3563-3584, July.
    2. Kazem Shahverdi & Hossein Talebmorad, 2023. "Automating HEC-RAS and Linking with Particle Swarm Optimizer to Calibrate Manning’s Roughness Coefficient," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 975-993, January.
    3. Saritha Padiyedath Gopalan & Akira Kawamura & Hideo Amaguchi & Gubash Azhikodan, 2020. "A Generalized Storage Function Model for the Water Level Estimation Using Rating Curve Relationship," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2603-2619, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yuekuan & Zheng, Siqian, 2020. "Uncertainty study on thermal and energy performances of a deterministic parameters based optimal aerogel glazing system using machine-learning method," Energy, Elsevier, vol. 193(C).
    2. Helton, Jon C. & Johnson, Jay D. & Sallaberry, Cédric J., 2011. "Quantification of margins and uncertainties: Example analyses from reactor safety and radioactive waste disposal involving the separation of aleatory and epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1014-1033.
    3. Saurbayeva, Assemgul & Memon, Shazim Ali & Kim, Jong, 2023. "Integrated multi-stage sensitivity analysis and multi-objective optimization approach for PCM integrated residential buildings in different climate zones," Energy, Elsevier, vol. 278(PB).
    4. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    5. Guo, Zehua & Dailey, Ryan & Feng, Tangtao & Zhou, Yukun & Sun, Zhongning & Corradini, Michael L & Wang, Jun, 2021. "Uncertainty analysis of ATF Cr-coated-Zircaloy on BWR in-vessel accident progression during a station blackout," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    6. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost," Energy, Elsevier, vol. 192(C).
    7. Zio, E. & Pedroni, N., 2010. "An optimized Line Sampling method for the estimation of the failure probability of nuclear passive systems," Reliability Engineering and System Safety, Elsevier, vol. 95(12), pages 1300-1313.
    8. Yildiz, Yusuf & Korkmaz, Koray & Göksal Özbalta, Türkan & Durmus Arsan, Zeynep, 2012. "An approach for developing sensitive design parameter guidelines to reduce the energy requirements of low-rise apartment buildings," Applied Energy, Elsevier, vol. 93(C), pages 337-347.
    9. Wu, Qiong-Li & Cournède, Paul-Henry & Mathieu, Amélie, 2012. "An efficient computational method for global sensitivity analysis and its application to tree growth modelling," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 35-43.
    10. Zio, E. & Pedroni, N., 2012. "Monte Carlo simulation-based sensitivity analysis of the model of a thermal–hydraulic passive system," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 90-106.
    11. Song, Xiaodong & Bryan, Brett A. & Almeida, Auro C. & Paul, Keryn I. & Zhao, Gang & Ren, Yin, 2013. "Time-dependent sensitivity of a process-based ecological model," Ecological Modelling, Elsevier, vol. 265(C), pages 114-123.
    12. Hou, Tianfeng & Nuyens, Dirk & Roels, Staf & Janssen, Hans, 2019. "Quasi-Monte Carlo based uncertainty analysis: Sampling efficiency and error estimation in engineering applications," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    13. Cui, Lijie & Lu, Zhenzhou & Wang, Pan & Wang, Weihu, 2014. "The ordering importance measure of random variable and its estimation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 105(C), pages 132-143.
    14. Iftikhar Ahmad & Ahsan Ayub & Uzair Ibrahim & Mansoor Khan Khattak & Manabu Kano, 2018. "Data-Based Sensing and Stochastic Analysis of Biodiesel Production Process," Energies, MDPI, vol. 12(1), pages 1-13, December.
    15. McFarland, John & DeCarlo, Erin, 2020. "A Monte Carlo framework for probabilistic analysis and variance decomposition with distribution parameter uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    16. Penttinen, Jussi-Pekka & Niemi, Arto & Gutleber, Johannes & Koskinen, Kari T. & Coatanéa, Eric & Laitinen, Jouko, 2019. "An open modelling approach for availability and reliability of systems," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 387-399.
    17. Ehre, Max & Papaioannou, Iason & Straub, Daniel, 2020. "Global sensitivity analysis in high dimensions with PLS-PCE," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    18. Narkuniene, Asta & Poskas, Povilas & Kilda, Raimondas & Bartkus, Gytis, 2015. "Uncertainty and sensitivity analysis of radionuclide migration through the engineered barriers of deep geological repository: Case of RBMK-1500 SNF," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 8-16.
    19. Brissaud, Florent & Barros, Anne & Bérenguer, Christophe & Charpentier, Dominique, 2011. "Reliability analysis for new technology-based transmitters," Reliability Engineering and System Safety, Elsevier, vol. 96(2), pages 299-313.
    20. Jåstad, Eirik Ogner & Bolkesjø, Torjus Folsland, 2023. "Offshore wind power market values in the North Sea – A probabilistic approach," Energy, Elsevier, vol. 267(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:15:d:10.1007_s11269-019-02421-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.