IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i14d10.1007_s11269-019-02434-1.html
   My bibliography  Save this article

Site Selection of Different Irrigation Systems Using an Analytical Hierarchy Process Integrated with GIS in a Semi-Arid Region

Author

Listed:
  • Lamya Neissi

    (Shahid Chamran University of Ahvaz)

  • Mohammad Albaji

    (Shahid Chamran University of Ahvaz)

  • Saeed Boroomand Nasab

    (Shahid Chamran University of Ahvaz)

Abstract

Site selection of different irrigation systems can lead to higher water productivity in drought conditions. The present study intends to evaluate suitable regions along the Izeh plain (Iran) for different pressurized and gravitational irrigation systems using Analytical Hierarchy Process (AHP) based on Geographic Information System (GIS). To that end, a variety of inputs such as climate, topography, skilled labor and system costs, etc. were identified and classified into two main categories of socio-economic and environmental criteria. Each criterion was subdivided into several criteria to make the site selection more specific. A matrix of the pair-wise comparison was, in turn, used to compare these criteria and sub-criteria, and to evaluate them based on their relative importance based on the region’s suitability for different irrigation system alternatives. Geographical layers were then obtained for each sub-criterion to select the most suitable sites for different irrigation systems in the study area. Pressurized irrigation systems including wheel move irrigation system, drip irrigation system and solid-set sprinkler irrigation system, together with gravitational irrigation systems consisting of surface irrigation system, and low-pressure irrigation system were considered as irrigation system alternatives during the site selection process in this study. The result map of site selection for different alternatives showed that surface irrigation, drip irrigation and low pressure systems were the best irrigation system alternatives for the region studied.

Suggested Citation

  • Lamya Neissi & Mohammad Albaji & Saeed Boroomand Nasab, 2019. "Site Selection of Different Irrigation Systems Using an Analytical Hierarchy Process Integrated with GIS in a Semi-Arid Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4955-4967, November.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:14:d:10.1007_s11269-019-02434-1
    DOI: 10.1007/s11269-019-02434-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-02434-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-02434-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hulin Pan & Qian Xu, 2018. "Quantitative Analysis on the Influence Factors of the Sustainable Water Resource Management Performance in Irrigation Areas: An Empirical Research from China," Sustainability, MDPI, vol. 10(1), pages 1-15, January.
    2. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    3. Aliasghar Montazar & E. Zadbagher, 2010. "An Analytical Hierarchy Model for Assessing Global Water Productivity of Irrigation Networks in Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2817-2832, September.
    4. Zare Abyaneh, Hamid & Jovzi, Mehdi & Albaji, Mohammad, 2017. "Effect of regulated deficit irrigation, partial root drying and N-fertilizer levels on sugar beet crop (Beta vulgaris L.)," Agricultural Water Management, Elsevier, vol. 194(C), pages 13-23.
    5. Baffoe, Gideon, 2019. "Exploring the utility of Analytic Hierarchy Process (AHP) in ranking livelihood activities for effective and sustainable rural development interventions in developing countries," Evaluation and Program Planning, Elsevier, vol. 72(C), pages 197-204.
    6. Bakhtiar Feizizadeh & Thomas Blaschke, 2013. "Land suitability analysis for Tabriz County, Iran: a multi-criteria evaluation approach using GIS," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 56(1), pages 1-23, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sonja Bauer, 2020. "Identification of Water-Reuse Potentials to Strengthen Rural Areas in Water-Scarce Regions—The Case Study of Wuwei," Land, MDPI, vol. 9(12), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ustaoglu, E. & Sisman, S. & Aydınoglu, A.C., 2021. "Determining agricultural suitable land in peri-urban geography using GIS and Multi Criteria Decision Analysis (MCDA) techniques," Ecological Modelling, Elsevier, vol. 455(C).
    2. Seul-gi Lee & Bashir Adelodun & Mirza Junaid Ahmad & Kyung Sook Choi, 2022. "Multi-Level Prioritization Analysis of Water Governance Components to Improve Agricultural Water-Saving Policy: A Case Study from Korea," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    3. Neissi, Lamya & Albaji, Mohammad & Boroomand Nasab, Saeed, 2020. "Combination of GIS and AHP for site selection of pressurized irrigation systems in the Izeh plain, Iran," Agricultural Water Management, Elsevier, vol. 231(C).
    4. Mukund Pratap Singh & Pitam Singh & Priyamvada Singh, 2019. "Fuzzy AHP-based multi-criteria decision-making analysis for route alignment planning using geographic information system (GIS)," Journal of Geographical Systems, Springer, vol. 21(3), pages 395-432, September.
    5. Montazar, Aliasghar & Gheidari, Omid Nasiri & Snyder, Richard L., 2013. "A fuzzy analytical hierarchy methodology for the performance assessment of irrigation projects," Agricultural Water Management, Elsevier, vol. 121(C), pages 113-123.
    6. Animesh Debnath & Mrinmoy Majumder & Manish Pal, 2015. "A Cognitive Approach in Selection of Source for Water Treatment Plant based on Climatic Impact," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1907-1919, April.
    7. S. Toosi & J. Samani, 2012. "Evaluating Water Transfer Projects Using Analytic Network Process (ANP)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 1999-2014, May.
    8. S. Razavi Toosi & J. Samani, 2014. "A New Integrated MADM Technique Combined with ANP, FTOPSIS and Fuzzy Max-Min Set Method for Evaluating Water Transfer Projects," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4257-4272, September.
    9. Amal Aldababseh & Marouane Temimi & Praveen Maghelal & Oliver Branch & Volker Wulfmeyer, 2018. "Multi-Criteria Evaluation of Irrigated Agriculture Suitability to Achieve Food Security in an Arid Environment," Sustainability, MDPI, vol. 10(3), pages 1-33, March.
    10. Banai, Reza, 2010. "Evaluation of land use-transportation systems with the Analytic Network Process," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 3(1), pages 85-112.
    11. Fatih Yiğit & Şakir Esnaf, 2021. "A new Fuzzy C-Means and AHP-based three-phased approach for multiple criteria ABC inventory classification," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1517-1528, August.
    12. Rachele Corticelli & Margherita Pazzini & Cecilia Mazzoli & Claudio Lantieri & Annarita Ferrante & Valeria Vignali, 2022. "Urban Regeneration and Soft Mobility: The Case Study of the Rimini Canal Port in Italy," Sustainability, MDPI, vol. 14(21), pages 1-27, November.
    13. Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    14. Pishchulov, Grigory & Trautrims, Alexander & Chesney, Thomas & Gold, Stefan & Schwab, Leila, 2019. "The Voting Analytic Hierarchy Process revisited: A revised method with application to sustainable supplier selection," International Journal of Production Economics, Elsevier, vol. 211(C), pages 166-179.
    15. Seung-Jin Han & Won-Jae Lee & So-Hee Kim & Sang-Hoon Yoon & Hyunwoong Pyun, 2022. "Assessing Expected Long-term Benefits for the Olympic Games: Delphi-AHP Approach from Korean Olympic Experts," SAGE Open, , vol. 12(4), pages 21582440221, December.
    16. Denys Yemshanov & Frank H. Koch & Yakov Ben‐Haim & Marla Downing & Frank Sapio & Marty Siltanen, 2013. "A New Multicriteria Risk Mapping Approach Based on a Multiattribute Frontier Concept," Risk Analysis, John Wiley & Sons, vol. 33(9), pages 1694-1709, September.
    17. Mangla, Sachin Kumar & Srivastava, Praveen Ranjan & Eachempati, Prajwal & Tiwari, Aviral Kumar, 2024. "Exploring the impact of key performance factors on energy markets: From energy risk management perspectives," Energy Economics, Elsevier, vol. 131(C).
    18. Seyed Rakhshan & Ali Kamyad & Sohrab Effati, 2015. "Ranking decision-making units by using combination of analytical hierarchical process method and Tchebycheff model in data envelopment analysis," Annals of Operations Research, Springer, vol. 226(1), pages 505-525, March.
    19. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    20. Mónica García-Melón & Blanca Pérez-Gladish & Tomás Gómez-Navarro & Paz Mendez-Rodriguez, 2016. "Assessing mutual funds’ corporate social responsibility: a multistakeholder-AHP based methodology," Annals of Operations Research, Springer, vol. 244(2), pages 475-503, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:14:d:10.1007_s11269-019-02434-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.