IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i10d10.1007_s11269-019-02311-x.html
   My bibliography  Save this article

Multi-Objective Optimization Model for Design and Operation of Water Transmission Systems Using a Power Resilience Index for Assessing Hydraulic Reliability

Author

Listed:
  • Soheila Beygi

    (University of Tehran)

  • Massoud Tabesh

    (University of Tehran)

  • Shuming Liu

    (Tsinghua University)

Abstract

Water Transmission Systems (WTSs) are used to transport large flow over long distances and/or high heads. An optimal design involves evaluation of both cost and reliability objectives. The objective of this paper is to develop a novel approach to reliability-based optimization of WTS with pump stations by linking the optimization model in Non-dominated Sorting Genetic Algorithm (NSGA-II) to a simulation in EPANET2.0. The two objectives considered include minimizing the total cost of the system and maximizing the reliability. A new resilience measure is also developed as a hydraulic reliability measure for pump stations in WTSs based on Best Efficiency Pump (BEP). The present model is applied to a WTS case study in Iran. The results are then presented for the trade-off characteristics between total cost and reliability. The results indicate that 7.6% increase in costs can result in a significant growth in reliability from 0.06 to 0.91. Accordingly, the Power Resilience Index (PRI) can be used as a measure of hydraulic reliability in water transmission systems with pump station.

Suggested Citation

  • Soheila Beygi & Massoud Tabesh & Shuming Liu, 2019. "Multi-Objective Optimization Model for Design and Operation of Water Transmission Systems Using a Power Resilience Index for Assessing Hydraulic Reliability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3433-3447, August.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:10:d:10.1007_s11269-019-02311-x
    DOI: 10.1007/s11269-019-02311-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-02311-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-02311-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tiku T. Tanyimboh & Anna M. Czajkowska, 2018. "Joint Entropy Based Multi-Objective Evolutionary Optimization of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2569-2584, June.
    2. Akbar Shirzad & Massoud Tabesh & Behzad Atayikia, 2017. "Multiobjective Optimization of Pressure Dependent Dynamic Design for Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2561-2578, July.
    3. Hong, Sung-Pil & Kim, Taegyoon & Lee, Subin, 2019. "A precision pump schedule optimization for the water supply networks with small buffers," Omega, Elsevier, vol. 82(C), pages 24-37.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmad Sharafati & Siyamak Doroudi & Shamsuddin Shahid & Ali Moridi, 2021. "A Novel Stochastic Approach for Optimization of Diversion System Dimension by Considering Hydrological and Hydraulic Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3649-3677, September.
    2. Ngandu Balekelayi & Haile Woldesellasse & Solomon Tesfamariam, 2022. "Comparison of the Performance of a Surrogate Based Gaussian Process, NSGA2 and PSO Multi-objective Optimization of the Operation and Fuzzy Structural Reliability of Water Distribution System: Case Stu," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6169-6185, December.
    3. Bohong Wang & Yongtu Liang & Wei Zhao & Yun Shen & Meng Yuan & Zhimin Li & Jian Guo, 2021. "A Continuous Pump Location Optimization Method for Water Pipe Network Design," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 447-464, January.
    4. Husnain Haider & Majed Alinizzi & Md. Shafiquzzaman & Saleem S. AlSaleem & Mohammad Alresheedi & Rehan Sadiq, 2022. "Customer-Driven Water Supply Systems: Synergizing System Reliability and Customer Satisfaction with Bowtie Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3481-3503, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ngandu Balekelayi & Haile Woldesellasse & Solomon Tesfamariam, 2022. "Comparison of the Performance of a Surrogate Based Gaussian Process, NSGA2 and PSO Multi-objective Optimization of the Operation and Fuzzy Structural Reliability of Water Distribution System: Case Stu," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6169-6185, December.
    2. Bohong Wang & Yongtu Liang & Wei Zhao & Yun Shen & Meng Yuan & Zhimin Li & Jian Guo, 2021. "A Continuous Pump Location Optimization Method for Water Pipe Network Design," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 447-464, January.
    3. Tornyeviadzi, Hoese Michel & Owusu-Ansah, Emmanuel & Mohammed, Hadi & Seidu, Razak, 2022. "A systematic framework for dynamic nodal vulnerability assessment of water distribution networks based on multilayer networks," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    4. Xiang He & Yongbo Yuan, 2019. "A Framework of Identifying Critical Water Distribution Pipelines from Recovery Resilience," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3691-3706, September.
    5. Yihong Guan & Yangyang Chu & Mou Lv & Shuyan Li & Hang Li & Shen Dong & Yanbo Su, 2023. "Application of Strength Pareto Evolutionary Algorithm II in Multi-Objective Water Supply Optimization Model Design for Mountainous Complex Terrain," Sustainability, MDPI, vol. 15(15), pages 1-20, August.
    6. Tiku T. Tanyimboh & Anna M. Czajkowska, 2021. "Entropy maximizing evolutionary design optimization of water distribution networks under multiple operating conditions," Environment Systems and Decisions, Springer, vol. 41(2), pages 267-285, June.
    7. Yaser Amiri-Ardakani & Mohammad Najafzadeh, 2021. "Pipe Break Rate Assessment While Considering Physical and Operational Factors: A Methodology based on Global Positioning System and Data-Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3703-3720, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:10:d:10.1007_s11269-019-02311-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.