IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i2d10.1007_s11269-017-1839-7.html
   My bibliography  Save this article

A Novel Parallel Cellular Automata Algorithm for Multi-Objective Reservoir Operation Optimization

Author

Listed:
  • Mohammad Hadi Afshar

    (Iran University of Science and Technology)

  • R. Hajiabadi

    (Iran University of Science and Technology)

Abstract

In this paper, a novel Parallel Cellular Automata (PCA) approach is presented for multi-objective reservoir operation optimization. The problem considers the multi-objective operation of a single reservoir with the two conflicting objectives of water supply and energy production. The water supply objective is defined as the squared deviation of the monthly release from the downstream demand while the hydropower objective is defined as the squared deficit of the monthly power production from the installed capacity. The proposed method uses two parallel cellular automata methods each searching for the solution of a single objective problem starting from an initial random solution. Each CA, however, is randomly seeded with the solution provided by the other CA method at each CA iteration. Two different version of the proposed PCA is considered based on the way the CAs are seeded. In the first method referred to as PCA1, a fixed value of 0.5 is used for the probability of exchange while in the second method, referred to as PCA2, a temperature-based variable probability of exchange is used for seeding the CAs. The proposed methods are used for bi-objective operation of Dez reservoir in Iran. Various operation periods of 60, 120, 240 and 480 months are considered to illustrate the efficiency and effectiveness of the proposed PCA methods for problems of different scales. In addition, Non-dominated Sorting Genetic Algorithm (NSGAII), is also used to solve the problems and the results are presented and compared. The results indicate that Pareto solutions obtained by the proposed temperature based method PCA2 are well-scattered over the front and in particular toward the end points compared to those of NSGAII requiring much less computational time. The superiority of the proposed method to that of NSGAII is shown to increase with increasing scale of the problem.

Suggested Citation

  • Mohammad Hadi Afshar & R. Hajiabadi, 2018. "A Novel Parallel Cellular Automata Algorithm for Multi-Objective Reservoir Operation Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(2), pages 785-803, January.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:2:d:10.1007_s11269-017-1839-7
    DOI: 10.1007/s11269-017-1839-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-017-1839-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-017-1839-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yutao Qi & Liang Bao & Yingying Sun & Jungang Luo & Qiguang Miao, 2016. "A Memetic Multi-objective Immune Algorithm for Reservoir Flood Control Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 2957-2977, July.
    2. M. Ahmadi & Omid Bozorg Haddad & M. Mariño, 2014. "Extraction of Flexible Multi-Objective Real-Time Reservoir Operation Rules," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(1), pages 131-147, January.
    3. Reza Hajiabadi & Mahdi Zarghami, 2014. "Multi-Objective Reservoir Operation with Sediment Flushing; Case Study of Sefidrud Reservoir," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5357-5376, December.
    4. Xuning Guo & Tiesong Hu & Conglin Wu & Tao Zhang & Yibing Lv, 2013. "Multi-Objective Optimization of the Proposed Multi-Reservoir Operating Policy Using Improved NSPSO," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2137-2153, May.
    5. Ashkan Shokri & Omid Bozorg Haddad & Miguel Mariño, 2013. "Algorithm for Increasing the Speed of Evolutionary Optimization and its Accuracy in Multi-objective Problems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2231-2249, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. A. Bonora & G. Capano & A. Rango & Mario Maiolo, 2022. "Novel Eulerian Approach with Cellular Automata Modelling to Estimate Water Quality in a Drinking Water Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 5961-5976, December.
    2. Hamid Reza Yavari & Amir Robati, 2021. "Developing Water Cycle Algorithm for Optimal Operation in Multi-reservoirs Hydrologic System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2281-2303, June.
    3. Ali Zarei & Sayed-Farhad Mousavi & Madjid Eshaghi Gordji & Hojat Karami, 2019. "Optimal Reservoir Operation Using Bat and Particle Swarm Algorithm and Game Theory Based on Optimal Water Allocation among Consumers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3071-3093, July.
    4. Zengchuan Dong & Xiaokuan Ni & Mufeng Chen & Hongyi Yao & Wenhao Jia & Jiaxing Zhong & Li Ren, 2021. "Time-varying Decision-making Method for Multi-objective Regulation of Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3411-3430, August.
    5. Fatemeh Barzegari Banadkooki & Jan Adamowski & Vijay P. Singh & Mohammad Ehteram & Hojat Karami & Sayed Farhad Mousavi & Saeed Farzin & Ahmed EL-Shafie, 2020. "Crow Algorithm for Irrigation Management: A Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1021-1045, February.
    6. Shen, Jianjian & Cheng, Chuntian & Wang, Sen & Yuan, Xiaoye & Sun, Lifei & Zhang, Jun, 2020. "Multiobjective optimal operations for an interprovincial hydropower system considering peak-shaving demands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang-Fang Li & Jun Qiu, 2015. "Multi-Objective Reservoir Optimization Balancing Energy Generation and Firm Power," Energies, MDPI, vol. 8(7), pages 1-15, July.
    2. Elahe Fallah-Mehdipour & Omid Bozorg Haddad & Saeed Alimohammadi & Hugo Loáiciga, 2015. "Development of Real-Time Conjunctive Use Operation Rules for Aquifer-Reservoir Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1887-1906, April.
    3. Mehrdad Taghian & Iman Ahmadianfar, 2018. "Maximizing the Firm Energy Yield Preserving Total Energy Generation Via an Optimal Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 141-154, January.
    4. Muhammad Usman Rashid & Abid Latif & Muhammad Azmat, 2018. "Optimizing Irrigation Deficit of Multipurpose Cascade Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1675-1687, March.
    5. Xiang Zeng & Tiesong Hu & Xuning Guo & Xinjie Li, 2014. "Water Transfer Triggering Mechanism for Multi-Reservoir Operation in Inter-Basin Water Transfer-Supply Project," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1293-1308, March.
    6. Tao Bai & Lianzhou Wu & Jian-xia Chang & Qiang Huang, 2015. "Multi-Objective Optimal Operation Model of Cascade Reservoirs and Its Application on Water and Sediment Regulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2751-2770, June.
    7. Abolfazl Akbarpour & Mohammad Javad Zeynali & Mohammad Nazeri Tahroudi, 2020. "Locating Optimal Position of Pumping Wells in Aquifer Using Meta-Heuristic Algorithms and Finite Element Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 21-34, January.
    8. Habib Akbari-Alashti & Omid Bozorg Haddad & Miguel Mariño, 2015. "Evaluation of a Developed Discrete Time-Series Method in Flow Forecasting Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3211-3225, July.
    9. Yong Peng & Jinggang Chu & Anbang Peng & Huicheng Zhou, 2015. "Optimization Operation Model Coupled with Improving Water-Transfer Rules and Hedging Rules for Inter-Basin Water Transfer-Supply Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3787-3806, August.
    10. M. Ahmadi & Omid Bozorg Haddad & M. Mariño, 2014. "Extraction of Flexible Multi-Objective Real-Time Reservoir Operation Rules," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(1), pages 131-147, January.
    11. Parisa-Sadat Ashofteh & Omid Bozorg-Haddad & Hugo A. Loáiciga, 2017. "Multi-Criteria Environmental Impact Assessment of Alternative Irrigation Networks with an Adopted Matrix-Based Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 903-928, February.
    12. Liping Li & Pan Liu & David Rheinheimer & Chao Deng & Yanlai Zhou, 2014. "Identifying Explicit Formulation of Operating Rules for Multi-Reservoir Systems Using Genetic Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(6), pages 1545-1565, April.
    13. Ward, Frank A., 2023. "Innovations for the Water Resource Economics Curriculum: Training the Next Generation," Applied Economics Teaching Resources (AETR), Agricultural and Applied Economics Association, vol. 5(3), September.
    14. João Vieira & Maria Conceição Cunha, 2017. "Nested Optimization Approach for the Capacity Expansion of Multiquality Water Supply Systems under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(4), pages 1381-1395, March.
    15. Mahboubeh Khorsandi & Parisa-Sadat Ashofteh & Firoozeh Azadi & Xuefeng Chu, 2022. "Multi-Objective Firefly Integration with the K-Nearest Neighbor to Reduce Simulation Model Calls to Accelerate the Optimal Operation of Multi-Objective Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3283-3304, July.
    16. Di Zhu & Hua Chen & Yanlai Zhou & Yadong Mei & Xinfa Xu & Shenglian Guo, 2022. "A Triple-stage Operation Method for Deriving Operation Rules for Cascade Reservoirs during Catastrophic Flood Events," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 4863-4883, October.
    17. Guang Yang & Shenglian Guo & Liping Li & Xingjun Hong & Le Wang, 2016. "Multi-Objective Operating Rules for Danjiangkou Reservoir Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1183-1202, February.
    18. J. Yazdi & A. Moridi, 2018. "Multi-Objective Differential Evolution for Design of Cascade Hydropower Reservoir Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4779-4791, November.
    19. Ward, Frank A., 2023. "Innovations for the Water Resource Economics Curriculum: Training the Next Generation," Applied Economics Teaching Resources (AETR), Agricultural and Applied Economics Association, vol. 5(2), April.
    20. Omid Bozorg-Haddad & Mohammad Solgi & Hugo A. Loáiciga, 2017. "Investigation of Climatic Variability with Hybrid Statistical Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 341-353, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:2:d:10.1007_s11269-017-1839-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.