IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i2d10.1007_s11269-017-1836-x.html
   My bibliography  Save this article

Influence of Rainfall, Model Parameters and Routing Methods on Stormwater Modelling

Author

Listed:
  • Yongwei Gong

    (Beijing University of Civil Engineering and Architecture)

  • Xiaoning Li

    (Auburn University)

  • Dandan Zhai

    (China Water Environment Group Limited)

  • Dingkun Yin

    (Beijing University of Civil Engineering and Architecture)

  • Ruining Song

    (Beijing University of Civil Engineering and Architecture)

  • Junqi Li

    (Beijing University of Civil Engineering and Architecture)

  • Xing Fang

    (Auburn University
    Beijing University of Civil Engineering and Architecture)

  • Donghai Yuan

    (Beijing University of Civil Engineering and Architecture)

Abstract

Quantification of the uncertainty associated with stormwater models should be analyzed before using modelling results to make decisions on urban stormwater control and management programs. In this study, the InfoWorks Integrated Catchment Modelling (ICM) rainfall-runoff model was used to simulate hydrographs at the outfall of a catchment (drainage area 8.3 ha, with 95% pervious areas) in Shenzhen, China. The model was calibrated and validated for two rainfall events with Nash-Sutcliffe efficiency >0.81. The influence of rainfall, model parameters and routing methods on outflow hydrograph of the catchment was systematically studied. The influence of rainfall was analyzed using generated rainfall distributions with random errors and systematic errors (± 30% offsets). Random errors had less influence than systematic errors on peak flow and runoff volume, especially for two rainfall events with larger depths and longer durations. The Monte Carlo simulations using 500 parameter sets were used to verify the equifinality of the nine model parameters and determine the prediction uncertainty. Most of the monitored flows were within the uncertainty range. The influence of two routing methods from rainfall excess to hydrograph was studied. The InfoWorks ICM model incorporating double quasilinear reservoir routing was found to have a larger effect on the simulated hydrographs for rainfall events having larger depths and longer durations than using the U.S. EPA’s Storm Water Management Model nonlinear reservoir routing method did.

Suggested Citation

  • Yongwei Gong & Xiaoning Li & Dandan Zhai & Dingkun Yin & Ruining Song & Junqi Li & Xing Fang & Donghai Yuan, 2018. "Influence of Rainfall, Model Parameters and Routing Methods on Stormwater Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(2), pages 735-750, January.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:2:d:10.1007_s11269-017-1836-x
    DOI: 10.1007/s11269-017-1836-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-017-1836-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-017-1836-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenqing Song & Shizhuo Wang & Jiang Zhao & Shiliang Xu & Xuefei Zhou & Yalei Zhang, 2023. "Comprehensive Treatment for River Pollution in a Coastal City with a Complex River Network: A Case Study in Sanya, China," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    2. Bartosz Szeląg & Adam Kiczko & Grzegorz Łagód & Francesco Paola, 2021. "Relationship Between Rainfall Duration and Sewer System Performance Measures Within the Context of Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5073-5087, December.
    3. Yan Chen & Hao Hou & Yao Li & Luoyang Wang & Jinjin Fan & Ben Wang & Tangao Hu, 2022. "Urban Inundation under Different Rainstorm Scenarios in Lin’an City, China," IJERPH, MDPI, vol. 19(12), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:2:d:10.1007_s11269-017-1836-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.