IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i12d10.1007_s11269-018-2027-0.html
   My bibliography  Save this article

Optimization of Run-of-River Hydropower Plant Design under Climate Change Conditions

Author

Listed:
  • Parisa Sarzaeim

    (University of Tehran)

  • Omid Bozorg-Haddad

    (University of Tehran)

  • Babak Zolghadr-Asli

    (University of Tehran)

  • Elahe Fallah-Mehdipour

    (University of Tehran
    National Elites Foundation)

  • Hugo A. Loáiciga

    (University of California)

Abstract

The assessment of climate change and its impacts on hydropower generation is a complex issue. This paper evaluates the application of representative concentration pathways (RCPs, 2.6, 4.5, and 8.5) with the change factor (CF) method and the statistical downscaling method (SDSM) to generate six climatic scenarios of monthly temperature and rainfall over the period 2020–2049 in the Karkheh basin, Iran. The identification of unit hydrographs and component flows from rainfall, evaporation and streamflow data (IHACRES) model was employed to simulate runoff for the purpose of designing a run-of-river hydropower plant in the Karkheh basin. The non-dominated sorting genetic algorithm (NSGA)-II was employed to maximize yearly energy generation and the plant factor, simultaneously. Results indicate the runoff scenarios associated with the SDSM lead to higher run-of-river hydropower generation in 2020–2049 compared to the CF results.

Suggested Citation

  • Parisa Sarzaeim & Omid Bozorg-Haddad & Babak Zolghadr-Asli & Elahe Fallah-Mehdipour & Hugo A. Loáiciga, 2018. "Optimization of Run-of-River Hydropower Plant Design under Climate Change Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(12), pages 3919-3934, September.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:12:d:10.1007_s11269-018-2027-0
    DOI: 10.1007/s11269-018-2027-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-2027-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-2027-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Parisa Ashofteh & Omid Bozorg Haddad & Miguel Mariño, 2013. "Scenario Assessment of Streamflow Simulation and its Transition Probability in Future Periods Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 255-274, January.
    2. Rojanamon, Pannathat & Chaisomphob, Taweep & Bureekul, Thawilwadee, 2009. "Application of geographical information system to site selection of small run-of-river hydropower project by considering engineering/economic/environmental criteria and social impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2336-2348, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Senni, Chiara Colesanti & von Jagow, Adrian, 2023. "Water risks for hydroelectricity generation," LSE Research Online Documents on Economics 119256, London School of Economics and Political Science, LSE Library.
    2. Mehri Abdi-Dehkordi & Omid Bozorg-Haddad & Xuefeng Chu, 2021. "Development of a Combined Index to Evaluate Sustainability of Water Resources Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(9), pages 2965-2985, July.
    3. Kobra Rahmati & Parisa-Sadat Ashofteh & Hugo A. Loáiciga, 2021. "Application of the Grasshopper Optimization Algorithm (GOA) to the Optimal Operation of Hydropower Reservoir Systems Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4325-4348, October.
    4. Sasthav, Colin & Oladosu, Gbadebo, 2022. "Environmental design of low-head run-of-river hydropower in the United States: A review of facility design models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    5. Colesanti Senni, Chiara & Goel, Skand & von Jagow, Adrian, 2024. "Economic and financial consequences of water risks: The case of hydropower," Ecological Economics, Elsevier, vol. 218(C).
    6. Ali Arefinia & Omid Bozorg-Haddad & Khaled Ahmadaali & Javad Bazrafshan & Babak Zolghadr-Asli & Xuefeng Chu, 2022. "Estimation of geographical variations in virtual water content and crop yield under climate change: comparison of three data mining approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8378-8396, June.
    7. Elahe Fallah-Mehdipour & Omid Bozorg-Haddad & Xuefeng Chu, 2021. "Environmental demand effects on the energy generation of Karkheh reservoir: Base and climate change conditions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13165-13181, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aroonrat, Kanit & Wongwises, Somchai, 2015. "Current status and potential of hydro energy in Thailand: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 70-78.
    2. Kumar, Deepak & Katoch, S.S., 2015. "Sustainability suspense of small hydropower projects: A study from western Himalayan region of India," Renewable Energy, Elsevier, vol. 76(C), pages 220-233.
    3. Kumar, Deepak & Katoch, S.S., 2014. "Harnessing ‘water tower’ into ‘power tower’: A small hydropower development study from an Indian prefecture in western Himalayas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 87-101.
    4. Efthymios Moutsiakis & Athena Yiannakou, 2023. "Small Hydroelectric Energy and Spatial Planning: A Methodology Introducing the Concept of Territorial Carrying Capacity," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    5. Xu, Jiuping & Song, Xiaoling & Wu, Yimin & Zeng, Ziqiang, 2015. "GIS-modelling based coal-fired power plant site identification and selection," Applied Energy, Elsevier, vol. 159(C), pages 520-539.
    6. Rovick Tarife & Yosuke Nakanishi & Yicheng Zhou & Noel Estoperez & Anacita Tahud, 2023. "Integrated GIS and Fuzzy-AHP Framework for Suitability Analysis of Hybrid Renewable Energy Systems: A Case in Southern Philippines," Sustainability, MDPI, vol. 15(3), pages 1-25, January.
    7. Calvert, K. & Pearce, J.M. & Mabee, W.E., 2013. "Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 416-429.
    8. Gerardo Alcalá & Luis Fernando Grisales-Noreña & Quetzalcoatl Hernandez-Escobedo & Jose Javier Muñoz-Criollo & J. D. Revuelta-Acosta, 2021. "SHP Assessment for a Run-of-River (RoR) Scheme Using a Rectangular Mesh Sweeping Approach (MSA) Based on GIS," Energies, MDPI, vol. 14(11), pages 1-21, May.
    9. Ghadimi, A.A. & Razavi, F. & Mohammadian, B., 2011. "Determining optimum location and capacity for micro hydropower plants in Lorestan province in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4125-4131.
    10. Seungkook Roh & Jin Won Lee & Qingchang Li, 2019. "Effects of Rank-Ordered Feature Perceptions of Energy Sources on the Choice of the Most Acceptable Power Plant for a Neighborhood: An Investigation Using a South Korean Nationwide Sample," Sustainability, MDPI, vol. 11(6), pages 1-21, March.
    11. Kiattisak Sakulphan & Erik L. J. Bohez, 2018. "A New Optimal Selection Method with Seasonal Flow and Irrigation Variability for Hydro Turbine Type and Size," Energies, MDPI, vol. 11(11), pages 1-16, November.
    12. Dhaubanjar, Sanita & Lutz, Arthur F & Pradhananga, Saurav & Smolenaars, Wouter & Khanal, Sonu & Biemans, Hester & Nepal, Santosh & Ludwig, Fulco & Shrestha, Arun Bhakta & Immerzeel, Walter W, 2024. "From theoretical to sustainable potential for run-of-river hydropower development in the upper Indus basin," Applied Energy, Elsevier, vol. 357(C).
    13. Parvin Golfam & Parisa-Sadat Ashofteh & Taher Rajaee & Xuefeng Chu, 2019. "Prioritization of Water Allocation for Adaptation to Climate Change Using Multi-Criteria Decision Making (MCDM)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3401-3416, August.
    14. Arvin Samadi-koucheksaraee & Iman Ahmadianfar & Omid Bozorg-Haddad & Seyed Amin Asghari-pari, 2019. "Gradient Evolution Optimization Algorithm to Optimize Reservoir Operation Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 603-625, January.
    15. Kumar Sharma, Ameesh & Thakur, N.S., 2017. "Energy situation, current status and resource potential of run of the river (RoR) large hydro power projects in Jammu and Kashmir: India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 233-251.
    16. Butera, Ilaria & Balestra, Roberto, 2015. "Estimation of the hydropower potential of irrigation networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 140-151.
    17. Barragán-Escandón, Edgar A. & Zalamea-León, Esteban F. & Terrados-Cepeda, Julio & Vanegas-Peralta, P.F., 2020. "Energy self-supply estimation in intermediate cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    18. Moritz Schillinger & Hannes Weigt & Philipp Emanuel Hirsch, 2020. "Environmental flows or economic woes—Hydropower under global energy market changes," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-19, August.
    19. Anita Kwartnik-Pruc & Aneta Mączyńska, 2022. "Assessing Validity of Employing Surveying Methods to Capture Data on Topography to Determine Hydrological and Topographic Parameters Essential for Selecting Locations for the Construction of Small Hyd," Energies, MDPI, vol. 15(4), pages 1-41, February.
    20. Kelly-Richards, Sarah & Silber-Coats, Noah & Crootof, Arica & Tecklin, David & Bauer, Carl, 2017. "Governing the transition to renewable energy: A review of impacts and policy issues in the small hydropower boom," Energy Policy, Elsevier, vol. 101(C), pages 251-264.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:12:d:10.1007_s11269-018-2027-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.