IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v31y2017i6d10.1007_s11269-017-1617-6.html
   My bibliography  Save this article

Numerical and Experimental Study of an Under-Ground Water Reservoir, Cistern

Author

Listed:
  • S. M. A. Najafi

    (Shiraz University)

  • M. Yaghoubi

    (Shiraz University
    The Academy of Science of IR Iran)

Abstract

This article presents experimental and numerical study of an under-ground water reservoir (cistern) during six months operation in a semi-arid region. The cistern with one dome, four windcatchers and a water reservoir is located in Lar, a hot arid city at south of Iran. Outdoor and indoor air temperature and humidity, water temperature in three depths and dome surface temperature were measured using a data logging system. The results show that the average air humidity inside the cistern was almost constant during the experiments but its slight variation during a day follows inside air temperature changes. The inside air temperature was always lower than the ambient temperature and inside and outside average air temperature difference was about 6 °C. The difference was slightly higher in the hot seasons. The water reservoir was also modeled in 2D, axisymmetric and quasi steady numerical simulation for six months of operation. Highly stratified water temperature distribution was observed in the numerical results as well as the experimental measurements.

Suggested Citation

  • S. M. A. Najafi & M. Yaghoubi, 2017. "Numerical and Experimental Study of an Under-Ground Water Reservoir, Cistern," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(6), pages 1881-1897, April.
  • Handle: RePEc:spr:waterr:v:31:y:2017:i:6:d:10.1007_s11269-017-1617-6
    DOI: 10.1007/s11269-017-1617-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-017-1617-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-017-1617-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdoulkarim Esmaeili & Solmaz Vazirzadeh, 2009. "Water Pricing for Agricultural Production in the South of Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 957-964, March.
    2. Razavi, M. & Dehghani-sanij, A.R. & Khani, M.R. & Dehghani, M.R., 2015. "Comparing meshless local Petrov–Galerkin and artificial neural networks methods for modeling heat transfer in cisterns," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 521-529.
    3. Yaghoubi, M.A., 1991. "Air flow patterns around domed roof buildings," Renewable Energy, Elsevier, vol. 1(3), pages 345-350.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Sajad M.R. Khani & Mehdi N. Bahadori & Alireza Dehghani-Sanij & Ahmad Nourbakhsh, 2017. "Performance Evaluation of a Modular Design of Wind Tower with Wetted Surfaces," Energies, MDPI, vol. 10(7), pages 1-20, June.
    3. Lan Mu & Chunxia Luo & Zongjia Tan & Binglin Zhang & Xiaojuan Qu, 2023. "Assessing the Impact of Different Agricultural Irrigation Charging Methods on Sustainable Agricultural Production," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    4. Julio Berbel & M. Mesa-Jurado & Juan Pistón, 2011. "Value of Irrigation Water in Guadalquivir Basin (Spain) by Residual Value Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1565-1579, April.
    5. Mirzazade Akbarpoor, Ali & Haghighi Poshtiri, Amin & Biglari, Faraz, 2021. "Performance analysis of domed roof integrated with earth-to-air heat exchanger system to meet thermal comfort conditions in buildings," Renewable Energy, Elsevier, vol. 168(C), pages 1265-1293.
    6. Sina Jahanshahi & Reza Kerachian & Omid Emamjomehzadeh, 2023. "A Leader-Follower Framework for Sustainable Water Pricing and Allocation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1257-1274, February.
    7. Teresa Torregrosa & Martín Sevilla & Borja Montaño & Victoria López-Vico, 2010. "The Integrated Management of Water Resources in Marina Baja (Alicante, Spain). A Simultaneous Equation Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 3799-3815, November.
    8. Zohreh Sherafatpour & Abbas Roozbahani & Yousef Hasani, 2019. "Agricultural Water Allocation by Integration of Hydro-Economic Modeling with Bayesian Networks and Random Forest Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2277-2299, May.
    9. Wang, Shuping & Tan, Qian & Zhang, Tianyuan & Zhang, Tong, 2022. "Water management policy analysis: Insight from a calibration-based inexact programming method," Agricultural Water Management, Elsevier, vol. 269(C).
    10. Mine Baran & Aysel Yilmaz, 2018. "A Study of Local Environment of Harran Historical Domed Houses in Terms of Environmental Sustainability," Journal of Asian Scientific Research, Asian Economic and Social Society, vol. 8(6), pages 211-220, June.
    11. M. Majidi & A. Alizadeh & M. Vazifedoust & A. Farid & T. Ahmadi, 2015. "Analysis of the Effect of Missing Weather Data on Estimating Daily Reference Evapotranspiration Under Different Climatic Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2107-2124, May.
    12. Hadavand, M. & Yaghoubi, M., 2008. "Thermal behavior of curved roof buildings exposed to solar radiation and wind flow for various orientations," Applied Energy, Elsevier, vol. 85(8), pages 663-679, August.
    13. Madjid Soltani & Alireza Dehghani-Sanij & Ahmad Sayadnia & Farshad M. Kashkooli & Kobra Gharali & SeyedBijan Mahbaz & Maurice B. Dusseault, 2018. "Investigation of Airflow Patterns in a New Design of Wind Tower with a Wetted Surface," Energies, MDPI, vol. 11(5), pages 1-23, April.
    14. Kazemi, A.R. & Mahbaz, S.B. & Dehghani-Sanij, A.R. & Dusseault, M.B. & Fraser, R., 2019. "Performance Evaluation of an Enhanced Geothermal System in the Western Canada Sedimentary Basin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    15. Poshtiri, Amin Haghighi & Bahar, Safoura & Jafari, Azadeh, 2016. "Daily cooling of one-story buildings using domed roof and solar adsorption cooling system," Applied Energy, Elsevier, vol. 182(C), pages 299-319.
    16. Dach, J. & Koszela, K. & Boniecki, P. & Zaborowicz, M. & Lewicki, A. & Czekała, W. & Skwarcz, J. & Qiao, Wei & Piekarska-Boniecka, H. & Białobrzewski, I., 2016. "The use of neural modelling to estimate the methane production from slurry fermentation processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 603-610.
    17. Carson Kinney & Alireza Dehghani-Sanij & SeyedBijan Mahbaz & Maurice B. Dusseault & Jatin S. Nathwani & Roydon A. Fraser, 2019. "Geothermal Energy for Sustainable Food Production in Canada’s Remote Northern Communities," Energies, MDPI, vol. 12(21), pages 1-25, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:31:y:2017:i:6:d:10.1007_s11269-017-1617-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.