IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v31y2017i2d10.1007_s11269-016-1399-2.html
   My bibliography  Save this article

Evaluation of Socio-Economic Factors that Determine Adoption of Climate Compatible Freshwater Supply Measures at Farm Level: a Case Study in the Southwest Netherlands

Author

Listed:
  • Jeroen A. Veraart

    (Wageningen University and Research Centre)

  • Rianne Duinen

    (Deltares
    University of Twente)

  • Jan Vreke

    (Wageningen University and Research Centre)

Abstract

The availability of freshwater resources in soil and groundwater bodies in the southwestern part of The Netherlands is expected to decrease during the agricultural growing season because of an expected increase of freshwater demands and a changing climate. This expected shortage of fresh water might negatively affect agricultural production. To cope with this problem, three pilots were initiated aimed at increasing freshwater supply at farm-level. The objective of this paper is to evaluate the socio-economic factors that determine the wider use of the measures investigated in these pilots. Therefore, the results of a feasibility study and a survey about drought risks were compared. The survey indicates that respondents do not make distinction between a dry and extremely dry year in their estimation of the return period. The results of a feasibility study illustrate that confidence and the level of common understanding regarding the reliability of these innovative measures has increased amongst project participants since 2012. The survey respondents were less optimistic about the wider implementation of the investigated technologies. A reliable freshwater supply and supportive legislation are the most decisive socio-economic factors for a future investment in additional freshwater supply for farmers in this region. Both studies illustrate that the impact of additional freshwater supply on farm economics strongly depends on farm type and crop cultivation plan. These insights may support the wider use of these innovations and may help to improve agro-hydrological models.

Suggested Citation

  • Jeroen A. Veraart & Rianne Duinen & Jan Vreke, 2017. "Evaluation of Socio-Economic Factors that Determine Adoption of Climate Compatible Freshwater Supply Measures at Farm Level: a Case Study in the Southwest Netherlands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(2), pages 587-608, January.
  • Handle: RePEc:spr:waterr:v:31:y:2017:i:2:d:10.1007_s11269-016-1399-2
    DOI: 10.1007/s11269-016-1399-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-016-1399-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-016-1399-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Zilberman & Jinhua Zhao & Amir Heiman, 2012. "Adoption Versus Adaptation, with Emphasis on Climate Change," Annual Review of Resource Economics, Annual Reviews, vol. 4(1), pages 27-53, August.
    2. Just, Richard E & Zilberman, David, 1983. "Stochastic Structure, Farm Size and Technology Adoption in Developing Agriculture," Oxford Economic Papers, Oxford University Press, vol. 35(2), pages 307-328, July.
    3. Stuyt, L.C. P.M. & Dierickx, W., 2006. "Design and performance of materials for subsurface drainage systems in agriculture," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 50-59, November.
    4. Heleen Vreugdenhil & Susan Taljaard & Jill H. Slinger, 2012. "Pilot projects and their diffusion: a case study of integrated coastal management in South Africa," International Journal of Sustainable Development, Inderscience Enterprises Ltd, vol. 15(1/2), pages 148-172.
    5. Lavee, Doron, 2010. "The effect of water supply uncertainty on farmers' choice of crop portfolio," Agricultural Water Management, Elsevier, vol. 97(11), pages 1847-1854, November.
    6. Saskia Hommes & Joanne Vinke-de Kruijf & Henriëtte Otter & Geiske Bouma, 2009. "Knowledge and Perceptions in Participatory Policy Processes: Lessons from the Delta-Region in the Netherlands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1641-1663, June.
    7. Elaine M. Liu, 2013. "Time to Change What to Sow: Risk Preferences and Technology Adoption Decisions of Cotton Farmers in China," The Review of Economics and Statistics, MIT Press, vol. 95(4), pages 1386-1403, October.
    8. Teresa Serra & David Zilberman & José M. Gil, 2008. "Differential uncertainties and risk attitudes between conventional and organic producers: the case of Spanish arable crop farmers," Agricultural Economics, International Association of Agricultural Economists, vol. 39(2), pages 219-229, September.
    9. Rob Swart & Lenny Bernstein & Minh Ha-Duong & Arthur Petersen, 2009. "Agreeing to disagree: uncertainty management in assessing climate change, impacts and responses by the IPCC," Climatic Change, Springer, vol. 92(1), pages 1-29, January.
    10. J. Roland Ortt & Chintan M. Shah & Marc A. Zegveld, 2008. "Commercializing Breakthrough Technologies: Scenarios and Strategies," World Scientific Book Chapters, in: Mostafa Hashem Sherif & Tarek M Khalil (ed.), Management Of Technology Innovation And Value Creation Selected Papers from the 16th International Conference on Management of Technology, chapter 13, pages 207-221, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zilberman, David & Lu, Liang & Reardon, Thomas, 2019. "Innovation-induced food supply chain design," Food Policy, Elsevier, vol. 83(C), pages 289-297.
    2. Madhu Khanna & Shady S. Atallah & Saurajyoti Kar & Bijay Sharma & Linghui Wu & Chengzheng Yu & Girish Chowdhary & Chinmay Soman & Kaiyu Guan, 2022. "Digital transformation for a sustainable agriculture in the United States: Opportunities and challenges," Agricultural Economics, International Association of Agricultural Economists, vol. 53(6), pages 924-937, November.
    3. Mekdim D. Regassa & Mohammed B. Degnet & Mequanint B. Melesse, 2023. "Access to credit and heterogeneous effects on agricultural technology adoption: Evidence from large rural surveys in Ethiopia," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 71(2), pages 231-253, June.
    4. Freudenreich, H., 2018. "Explaining Mexican Farmers Adoption of Hybrid Maize Seed - The Role of Social Psychology, Risk and Ambiguity Aversion," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277410, International Association of Agricultural Economists.
    5. Rodgers, Aaron & Morgan, Kimberly L. & Harri, Ardian, 2017. "Technology Adoption and Risk Preferences: The Case of Machine Harvesting by Southeastern Blueberry Producers," Journal of Food Distribution Research, Food Distribution Research Society, vol. 48(2), July.
    6. Ahsanuzzaman, & Priyo, Asad Karim Khan & Nuzhat, Kanti Ananta, 2022. "Effects of communication, group selection, and social learning on risk and ambiguity attitudes: Experimental evidence from Bangladesh," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 96(C).
    7. Doan Nainggolan & Faizal Rahmanto Moeis & Mette Termansen, 2023. "Does risk preference influence farm level adaptation strategies? – Survey evidence from Denmark," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(7), pages 1-23, October.
    8. Thomas Reardon & Amir Heiman & Liang Lu & Chandra S.R. Nuthalapati & Rob Vos & David Zilberman, 2021. "“Pivoting” by food industry firms to cope with COVID‐19 in developing regions: E‐commerce and “copivoting” delivery intermediaries," Agricultural Economics, International Association of Agricultural Economists, vol. 52(3), pages 459-475, May.
    9. Mao, Hui & Quan, Yurong & Fu, Yong & Chen, Shaojian, 2022. "Risk preferences, productive investment and straw return technology adoption by farmers in China," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322087, Agricultural and Applied Economics Association.
    10. Lim, S., 2018. "Risk Aversion, Crop Diversification, and Food Security," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277336, International Association of Agricultural Economists.
    11. Duan, Wei & Shen, Jinyu & Hogarth, Nicholas J. & Chen, Qian, 2021. "Risk preferences significantly affect household investment in timber forestry: Empirical evidence from Fujian, China," Forest Policy and Economics, Elsevier, vol. 125(C).
    12. Jinhua Xie & Gangqiao Yang & Ge Wang & Shuoyan He, 2024. "How does social capital affect farmers’ environment-friendly technology adoption behavior? A case study in Hubei Province, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 18361-18384, July.
    13. Just, Richard E. & Rausser, Gordon C., 1985. "Determination of the predominance of various expectations patterns in commodity futures and spot markets," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt9wv9s614, Department of Agricultural & Resource Economics, UC Berkeley.
    14. Langyintuo, Augustine S. & Mungoma, Catherine, 2008. "The effect of household wealth on the adoption of improved maize varieties in Zambia," Food Policy, Elsevier, vol. 33(6), pages 550-559, December.
    15. Cuong Le Van & Nguyen To The, 2019. "Farmers’ adoption of organic production," Asia-Pacific Journal of Regional Science, Springer, vol. 3(1), pages 33-59, February.
    16. Serra, Teresa & Zilberman, David & Goodwin, Barry K. & Featherstone, Allen M., 2005. "Effects of Decoupling on the Average and the Variability of Output," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24601, European Association of Agricultural Economists.
    17. Gatti, Nicolas & Cecil, Michael & Baylis, Kathy & Estes, Lyndon & Blekking, Jordan & Heckelei, Thomas & Vergopolan, Noemi & Evans, Tom, 2023. "Is closing the agricultural yield gap a “risky” endeavor?," Agricultural Systems, Elsevier, vol. 208(C).
    18. Evan J. Miller-Tait & Sandeep Mohapatra & M. K. (Marty) Luckert & Brent M. Swallow, 2019. "Processing technologies for undervalued grains in rural India: on target to help the poor?," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(1), pages 151-166, February.
    19. Goytom Abraha Kahsay & Daniel Osberghaus, 2018. "Storm Damage and Risk Preferences: Panel Evidence from Germany," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 301-318, September.
    20. Sarah Jansen & William Foster & Gustavo Anríquez & Jorge Ortega, 2021. "Understanding Farm-Level Incentives within the Bioeconomy Framework: Prices, Product Quality, Losses, and Bio-Based Alternatives," Sustainability, MDPI, vol. 13(2), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:31:y:2017:i:2:d:10.1007_s11269-016-1399-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.