IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v31y2017i15d10.1007_s11269-017-1779-2.html
   My bibliography  Save this article

Calibration via Multi-period State Estimation in Water Distribution Systems

Author

Listed:
  • Sarai Díaz

    (University of Castilla-La Mancha)

  • Roberto Mínguez

    (Spin-Off UCLM, Hydraulics Laboratory University of Castilla-La Mancha)

  • Javier González

    (University of Castilla-La Mancha
    Spin-Off UCLM, Hydraulics Laboratory University of Castilla-La Mancha)

Abstract

Calibration of model parameters is of utmost importance to ensure the good performance of hydraulic simulation models. In this work, calibration is conceived within a joint multi-period parameter and state estimation approach, where model parameters (i.e. roughness coefficients) and hydraulic variables should be computed from available measurements at different times. The aim of this paper is twofold: (1) to present a novel methodology for the calibration of water networks via multi-period state estimation, and (2) to adapt observability analysis to this approach. The novelty of this work is that such a large-scale non-linear optimisation problem is here solved using mathematical programming decomposition techniques. On the other hand, observability analysis requires the construction of the multi-period measurement and parameter Jacobian matrix of the problem. The proposed approach enables computation of the observable roughness coefficients from available readings over time, making possible the periodic reassessment of roughness values based on recent online measurements. The potential of the method is illustrated by means of a case study, which shows how such a methodology would contribute to make the most of telemetry data for calibration purposes.

Suggested Citation

  • Sarai Díaz & Roberto Mínguez & Javier González, 2017. "Calibration via Multi-period State Estimation in Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4801-4819, December.
  • Handle: RePEc:spr:waterr:v:31:y:2017:i:15:d:10.1007_s11269-017-1779-2
    DOI: 10.1007/s11269-017-1779-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-017-1779-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-017-1779-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shanmugam Kumar & Shankar Narasimhan & S. Murty Bhallamudi, 2010. "Parameter Estimation in Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1251-1272, April.
    2. Zheng Wu & Christopher Clark, 2009. "Evolving Effective Hydraulic Model for Municipal Water Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(1), pages 117-136, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehdi Dini & Massoud Tabesh, 2014. "A New Method for Simultaneous Calibration of Demand Pattern and Hazen-Williams Coefficients in Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 2021-2034, May.
    2. Huan-Feng Duan, 2015. "Uncertainty Analysis of Transient Flow Modeling and Transient-Based Leak Detection in Elastic Water Pipeline Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5413-5427, November.
    3. Andrea Menapace & Diego Avesani, 2019. "Global Gradient Algorithm Extension to Distributed Pressure Driven Pipe Demand Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1717-1736, March.
    4. Morales-Hernández, Mario & Playán, Enrique & Latorre, Borja & Montoya, Francisco & Madurga, Cristina & Sánchez de Rivera, Alejandro & Zapata, Nery, 2022. "Normalized pressure: a key variable to assess zebra mussel infestation in pressurized irrigation networks," Agricultural Water Management, Elsevier, vol. 260(C).
    5. Cristiana Bragalli & Matteo Fortini & Ezio Todini, 2016. "Enhancing Knowledge in Water Distribution Networks via Data Assimilation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3689-3706, September.
    6. Jian Sha & Zeli Li & Dennis P. Swaney & Bongghi Hong & Wei Wang & Yuqiu Wang, 2014. "Application of a Bayesian Watershed Model Linking Multivariate Statistical Analysis to Support Watershed-Scale Nitrogen Management in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3681-3695, September.
    7. Dejan Brkić, 2011. "Iterative Methods for Looped Network Pipeline Calculation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(12), pages 2951-2987, September.
    8. Jian Sha & Zeli Li & Dennis Swaney & Bongghi Hong & Wei Wang & Yuqiu Wang, 2014. "Application of a Bayesian Watershed Model Linking Multivariate Statistical Analysis to Support Watershed-Scale Nitrogen Management in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3681-3695, September.
    9. Calvin Siew & Tiku Tanyimboh, 2012. "Penalty-Free Feasibility Boundary Convergent Multi-Objective Evolutionary Algorithm for the Optimization of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4485-4507, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:31:y:2017:i:15:d:10.1007_s11269-017-1779-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.