IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v29y2015i9p3371-3386.html
   My bibliography  Save this article

Deriving Optimal Daily Reservoir Operation Scheme with Consideration of Downstream Ecological Hydrograph Through A Time-Nested Approach

Author

Listed:
  • Duan Chen
  • Ruonan Li
  • Qiuwen Chen
  • Desuo Cai

Abstract

The ecological flow requirement (EFR) during special life stages of species, for instance the fish spawning period, concerns not only the flow rate, but also daily changes in the flow rate. Therefore, it is more appropriate to optimize ecologically-friendly reservoir operation on a daily base. Directly formulating and solving a daily-based optimization model would involve a large number of decision variables as well as constraints, which may lead to unfavourable time consumption and unreliable solutions. This study proposes a time-nested approach to derive an optimal daily reservoir operation scheme with consideration of the downstream ecological hydrograph. It scales down the decision variables from monthly-base to 10-day base and finally to daily-base. The proposed method was applied to two cascaded reservoirs in the Yalong River in southwest China, where a daily ecological flow is required to conserve the habitats of an indigenous fish Schizothorax chongi (S. chongi). The results showed that the developed method could efficiently derive a daily optimal operational scheme with the consideration of downstream EFR for fish habitat conservation. In addition, the method greatly improves global searching ability in dealing with complex optimization problems. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Duan Chen & Ruonan Li & Qiuwen Chen & Desuo Cai, 2015. "Deriving Optimal Daily Reservoir Operation Scheme with Consideration of Downstream Ecological Hydrograph Through A Time-Nested Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3371-3386, July.
  • Handle: RePEc:spr:waterr:v:29:y:2015:i:9:p:3371-3386
    DOI: 10.1007/s11269-015-1005-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-015-1005-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-015-1005-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. c. gandolfi & g. guariso & d. togni, 1997. "Optimal Flow Allocation in the Zambezi River System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 11(5), pages 377-393, October.
    2. Xinghui Xia & Zhifeng Yang & Yuxiang Wu, 2009. "Incorporating Eco-environmental Water Requirements in Integrated Evaluation of Water Quality and Quantity—A Study for the Yellow River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(6), pages 1067-1079, April.
    3. Chen, Qiuwen & Chen, Duan & Li, Ruonan & Ma, Jinfeng & Blanckaert, Koen, 2013. "Adapting the operation of two cascaded reservoirs for ecological flow requirement of a de-watered river channel due to diversion-type hydropower stations," Ecological Modelling, Elsevier, vol. 252(C), pages 266-272.
    4. B. Croke & J. Ticehurst & R. Letcher & J. Norton & L. Newham & A. Jakeman, 2007. "Integrated assessment of water resources: Australian experiences," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 351-373, January.
    5. Fi-John Chang & Li Chen, 1998. "Real-Coded Genetic Algorithm for Rule-Based Flood Control Reservoir Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 12(3), pages 185-198, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen, Xin & Fang, Guo-hua & Guo, Yu-xue & Zhou, Lei, 2016. "Adapting the operation of cascaded reservoirs on Yuan River for fish habitat conservation," Ecological Modelling, Elsevier, vol. 337(C), pages 221-230.
    2. Han-Chung Yang & Jian-Ping Suen & Shih-Kai Chou, 2016. "Estimating the Ungauged Natural Flow Regimes for Environmental Flow Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4571-4584, October.
    3. Qiu, Jun & Wei, Jia-Hua & Jiang, Hao & Li, Fang-Fang, 2019. "Ecohydrological evaluation for Fish spawning based on fluctuation identification algorithm (FIA)," Ecological Modelling, Elsevier, vol. 402(C), pages 35-44.
    4. Duan Chen & Qiuwen Chen & Arturo S. Leon & Ruonan Li, 2016. "A Genetic Algorithm Parallel Strategy for Optimizing the Operation of Reservoir with Multiple Eco-environmental Objectives," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(7), pages 2127-2142, May.
    5. Duan Chen & Arturo S. Leon & Qiuwen Chen & Ruonan Li, 2018. "A Derivative-Free Hybrid Optimization Model for Short-Term Operation of a Multi-Objective Reservoir System Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(11), pages 3707-3721, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jenq-Tzong Shiau & Chian-You Huang, 2014. "Detecting Multi-Purpose Reservoir Operation Induced Time-Frequency Alteration Using Wavelet Transform," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3577-3590, September.
    2. Wenlin Yuan & Xueyan Yu & Chengguo Su & Denghua Yan & Zening Wu, 2020. "A Multi-Timescale Integrated Operation Model for Balancing Power Generation, Ecology, and Water Supply of Reservoir Operation," Energies, MDPI, vol. 14(1), pages 1-21, December.
    3. Weibin Zhang & Xiaochun Zha & Jiaxing Li & Wei Liang & Yugai Ma & Dongmei Fan & Sha Li, 2014. "Spatiotemporal Change of Blue Water and Green Water Resources in the Headwater of Yellow River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4715-4732, October.
    4. Alireza B. Dariane & M. M. Javadianzadeh & L. Douglas James, 2016. "Developing an Efficient Auto-Calibration Algorithm for HEC-HMS Program," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(6), pages 1923-1937, April.
    5. Jian-Ping Suen, 2011. "Determining the Ecological Flow Regime for Existing Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(3), pages 817-835, February.
    6. Wang Zhang & Pan Liu & Xizhen Chen & Li Wang & Xueshan Ai & Maoyuan Feng & Dedi Liu & Yuanyuan Liu, 2016. "Optimal Operation of Multi-reservoir Systems Considering Time-lags of Flood Routing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 523-540, January.
    7. Chen, Qiuwen & Chen, Duan & Li, Ruonan & Ma, Jinfeng & Blanckaert, Koen, 2013. "Adapting the operation of two cascaded reservoirs for ecological flow requirement of a de-watered river channel due to diversion-type hydropower stations," Ecological Modelling, Elsevier, vol. 252(C), pages 266-272.
    8. Gokmen Tayfur, 2017. "Modern Optimization Methods in Water Resources Planning, Engineering and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3205-3233, August.
    9. V. Jothiprakash & R. Arunkumar, 2013. "Optimization of Hydropower Reservoir Using Evolutionary Algorithms Coupled with Chaos," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 1963-1979, May.
    10. G. Raadgever & E. Mostert & N. Giesen, 2012. "Learning from Collaborative Research in Water Management Practice," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3251-3266, September.
    11. Saad Dahmani & Djilali Yebdri, 2020. "Hybrid Algorithm of Particle Swarm Optimization and Grey Wolf Optimizer for Reservoir Operation Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4545-4560, December.
    12. Morteza Zargar & Hossein M. V. Samani & Ali Haghighi, 2016. "Optimization of gated spillways operation for flood risk management in multi-reservoir systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 299-320, May.
    13. Aida Tayebiyan & Thamer Ahmed Mohammed Ali & Abdul Halim Ghazali & M. A. Malek, 2016. "Optimization of Exclusive Release Policies for Hydropower Reservoir Operation by Using Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1203-1216, February.
    14. Cuan Petheram & Thomas McMahon & Murray Peel & Chris Smith, 2010. "A Continental Scale Assessment of Australia’s Potential for Irrigation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(9), pages 1791-1817, July.
    15. Daniel Che & Larry Mays, 2015. "Development of an Optimization/Simulation Model for Real-Time Flood-Control Operation of River-Reservoirs Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 3987-4005, September.
    16. Madan Jha & Gaurav Nanda & Manoj Samuel, 2004. "Determining Hydraulic Characteristics of Production Wells using Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(4), pages 353-377, August.
    17. M. Afshar & R. Moeini, 2008. "Partially and Fully Constrained Ant Algorithms for the Optimal Solution of Large Scale Reservoir Operation Problems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(12), pages 1835-1857, December.
    18. Kan Yang & Jiao Zheng & Min Yang & Ran Zhou & Guoshuai Liu, 2013. "Adaptive Genetic Algorithm for Daily Optimal Operation of Cascade Reservoirs and its Improvement Strategy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(12), pages 4209-4235, September.
    19. Md. Hossain & A. El-shafie, 2013. "Intelligent Systems in Optimizing Reservoir Operation Policy: A Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3387-3407, July.
    20. Ioslovich, Ilya & Gutman, Per-Olof, 2001. "A model for the global optimization of water prices and usage for the case of spatially distributed sources and consumers," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 56(4), pages 347-356.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:29:y:2015:i:9:p:3371-3386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.