IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v29y2015i8p2895-2912.html
   My bibliography  Save this article

Optimal Remediation Design of Unconfined Contaminated Aquifers Based on the Finite Element Method and a Modified Firefly Algorithm

Author

Listed:
  • Mohammad Kazemzadeh-Parsi
  • Farhang Daneshmand
  • Mohammad Ahmadfard
  • Jan Adamowski

Abstract

Remediation of contaminated sites requires an optimal decision making system to develop remediation techniques in a cost-effective and efficient manner. A coupled simulation–optimization solution approach, based on the finite element method (FEM) and a modified firefly algorithm (MFA), is developed in this study for optimal contaminated groundwater remediation design. A new modified firefly optimization algorithm is proposed by modifying the traditional firefly algorithm in three ways: (i) adding memory, (ii) preventing premature convergence to local optima and thus accelerating the optimization process, and (iii) proposing a new updating formula. Modifications performed in the present study improved the applicability and efficiency of the traditional metaheuristic firefly optimization algorithm, and led the MFA to outperform both its predecessor and conventional optimization methods (e.g., genetic algorithm). A hypothetical, unconfined contaminated field is considered and remediated by considering pump and treat and flushing methods. Pumping rates are considered as design variables while the number of pumps and pump locations, as well as the pumping period, are initially assumed. The coupled simulation-optimization model (FEM-MFA) proposed in this study constitutes an effective way to determine an optimal remediation design for a contaminated aquifer. The results of the present investigation will contribute to improve groundwater management in contaminated aquifers. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Mohammad Kazemzadeh-Parsi & Farhang Daneshmand & Mohammad Ahmadfard & Jan Adamowski, 2015. "Optimal Remediation Design of Unconfined Contaminated Aquifers Based on the Finite Element Method and a Modified Firefly Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2895-2912, June.
  • Handle: RePEc:spr:waterr:v:29:y:2015:i:8:p:2895-2912
    DOI: 10.1007/s11269-015-0976-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-015-0976-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-015-0976-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hone-Jay Chu & Liang-Cheng Chang, 2009. "Application of Optimal Control and Fuzzy Theory for Dynamic Groundwater Remediation Design," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(4), pages 647-660, March.
    2. Xiang Li & Asgeir Tomasgard & Paul I. Barton, 2011. "Nonconvex Generalized Benders Decomposition for Stochastic Separable Mixed-Integer Nonlinear Programs," Journal of Optimization Theory and Applications, Springer, vol. 151(3), pages 425-454, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Partha Majumder & T. I. Eldho, 2016. "A New Groundwater Management Model by Coupling Analytic Element Method and Reverse Particle Tracking with Cat Swarm Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(6), pages 1953-1972, April.
    2. Shuangsheng Zhang & Jing Qiang & Hanhu Liu & Xiaonan Wang & Junjie Zhou & Dongliang Fan, 2022. "An Adaptive Dynamic Kriging Surrogate Model for Application to the Optimal Remediation of Contaminated Groundwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5011-5032, October.
    3. Sina Sadeghfam & Yousef Hassanzadeh & Rahman Khatibi & Ata Allah Nadiri & Marjan Moazamnia, 2019. "Groundwater Remediation through Pump-Treat-Inject Technology Using Optimum Control by Artificial Intelligence (OCAI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1123-1145, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Yang & G. Huang & X. Qin, 2010. "An Integrated Simulation-Assessment Approach for Evaluating Health Risks of Groundwater Contamination Under Multiple Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3349-3369, October.
    2. Ogbe, Emmanuel & Li, Xiang, 2017. "A new cross decomposition method for stochastic mixed-integer linear programming," European Journal of Operational Research, Elsevier, vol. 256(2), pages 487-499.
    3. Jia-Jiang Lin & Feng Xu & Xiong-Lin Luo, 2023. "Nonconvex sensitivity-based generalized Benders decomposition," Journal of Global Optimization, Springer, vol. 86(1), pages 37-60, May.
    4. Hadi Sanikhani & Ozgur Kisi, 2012. "River Flow Estimation and Forecasting by Using Two Different Adaptive Neuro-Fuzzy Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1715-1729, April.
    5. Fan-Yun Meng & Li-Ping Pang & Jian Lv & Jin-He Wang, 2017. "An approximate bundle method for solving nonsmooth equilibrium problems," Journal of Global Optimization, Springer, vol. 68(3), pages 537-562, July.
    6. Gokmen Tayfur & Ata Nadiri & Asghar Moghaddam, 2014. "Supervised Intelligent Committee Machine Method for Hydraulic Conductivity Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1173-1184, March.
    7. Subramanian, Avinash S.R. & Gundersen, Truls & Barton, Paul I. & Adams, Thomas A., 2022. "Global optimization of a hybrid waste tire and natural gas feedstock polygeneration system," Energy, Elsevier, vol. 250(C).
    8. Andrew Allman & Qi Zhang, 2021. "Branch-and-price for a class of nonconvex mixed-integer nonlinear programs," Journal of Global Optimization, Springer, vol. 81(4), pages 861-880, December.
    9. Can Li & Ignacio E. Grossmann, 2019. "A finite $$\epsilon $$ϵ-convergence algorithm for two-stage stochastic convex nonlinear programs with mixed-binary first and second-stage variables," Journal of Global Optimization, Springer, vol. 75(4), pages 921-947, December.
    10. Hesamzadeh, M. & Holmberg, P. & Sarfati, M., 2018. "Simulation and Evaluation of Zonal Electricity Market Designs," Cambridge Working Papers in Economics 1829, Faculty of Economics, University of Cambridge.
    11. Emmanuel Ogbe & Xiang Li, 2019. "A joint decomposition method for global optimization of multiscenario nonconvex mixed-integer nonlinear programs," Journal of Global Optimization, Springer, vol. 75(3), pages 595-629, November.
    12. Can Li & Ignacio E. Grossmann, 2019. "A generalized Benders decomposition-based branch and cut algorithm for two-stage stochastic programs with nonconvex constraints and mixed-binary first and second stage variables," Journal of Global Optimization, Springer, vol. 75(2), pages 247-272, October.
    13. Tapia-Ubeda, Francisco J. & Miranda, Pablo A. & Macchi, Marco, 2018. "A Generalized Benders Decomposition based algorithm for an inventory location problem with stochastic inventory capacity constraints," European Journal of Operational Research, Elsevier, vol. 267(3), pages 806-817.
    14. Yankai Cao & Victor M. Zavala, 2019. "A scalable global optimization algorithm for stochastic nonlinear programs," Journal of Global Optimization, Springer, vol. 75(2), pages 393-416, October.
    15. Vahid Moosavi & Mehdi Vafakhah & Bagher Shirmohammadi & Negin Behnia, 2013. "A Wavelet-ANFIS Hybrid Model for Groundwater Level Forecasting for Different Prediction Periods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1301-1321, March.
    16. Steffen Rebennack, 2016. "Computing tight bounds via piecewise linear functions through the example of circle cutting problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(1), pages 3-57, August.
    17. Sinha, Ankur & Das, Arka & Anand, Guneshwar & Jayaswal, Sachin, 2023. "A general purpose exact solution method for mixed integer concave minimization problems," European Journal of Operational Research, Elsevier, vol. 309(3), pages 977-992.
    18. Muhammet Emiroglu & Ozgur Kisi, 2013. "Prediction of Discharge Coefficient for Trapezoidal Labyrinth Side Weir Using a Neuro-Fuzzy Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1473-1488, March.
    19. Zhou Wei & M. Montaz Ali & Liang Xu & Bo Zeng & Jen-Chih Yao, 2019. "On Solving Nonsmooth Mixed-Integer Nonlinear Programming Problems by Outer Approximation and Generalized Benders Decomposition," Journal of Optimization Theory and Applications, Springer, vol. 181(3), pages 840-863, June.
    20. Isa Ebtehaj & Hossein Bonakdari, 2014. "Performance Evaluation of Adaptive Neural Fuzzy Inference System for Sediment Transport in Sewers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4765-4779, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:29:y:2015:i:8:p:2895-2912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.