IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v91y2025i1d10.1007_s10898-024-01433-w.html
   My bibliography  Save this article

Solving a class of two-stage stochastic nonlinear integer programs using value functions

Author

Listed:
  • Junlong Zhang

    (Tsinghua University)

  • Osman Y. Özaltın

    (North Carolina State University)

  • Andrew C. Trapp

    (Worcester Polytechnic Institute)

Abstract

We propose a level-set characterization of the value function of a class of nonlinear integer programs with finite domain. We study the theoretical properties of this characterization and show the equivalence between the set of level-set minimal vectors and a set of non-dominated right-hand side vectors. We use these properties to develop a solution approach for two-stage nonconvex integer programs with stochastic right-hand sides. The proposed approach can solve problems with pure integer variables in both stages. We demonstrate the effectiveness of the proposed approach using a nonlinear generalized assignment problem with uncertain capacity. We also conduct computational experiments using two-stage quadratically-constrained quadratic integer programs with stochastic right-hand sides. The proposed value function-based approach can solve instances whose extensive forms are among the largest stochastic quadratic integer programs solved in the literature with respect to the number of rows and variables in extensive form, and with considerably more rows.

Suggested Citation

  • Junlong Zhang & Osman Y. Özaltın & Andrew C. Trapp, 2025. "Solving a class of two-stage stochastic nonlinear integer programs using value functions," Journal of Global Optimization, Springer, vol. 91(1), pages 129-153, January.
  • Handle: RePEc:spr:jglopt:v:91:y:2025:i:1:d:10.1007_s10898-024-01433-w
    DOI: 10.1007/s10898-024-01433-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-024-01433-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-024-01433-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Semih Atakan & Suvrajeet Sen, 2018. "A Progressive Hedging based branch-and-bound algorithm for mixed-integer stochastic programs," Computational Management Science, Springer, vol. 15(3), pages 501-540, October.
    2. Robert M. Nauss, 2003. "Solving the Generalized Assignment Problem: An Optimizing and Heuristic Approach," INFORMS Journal on Computing, INFORMS, vol. 15(3), pages 249-266, August.
    3. S. Dempe & F. Mefo Kue, 2017. "Solving discrete linear bilevel optimization problems using the optimal value reformulation," Journal of Global Optimization, Springer, vol. 68(2), pages 255-277, June.
    4. Can Li & Ignacio E. Grossmann, 2019. "A generalized Benders decomposition-based branch and cut algorithm for two-stage stochastic programs with nonconvex constraints and mixed-binary first and second stage variables," Journal of Global Optimization, Springer, vol. 75(2), pages 247-272, October.
    5. Martin Savelsbergh, 1997. "A Branch-and-Price Algorithm for the Generalized Assignment Problem," Operations Research, INFORMS, vol. 45(6), pages 831-841, December.
    6. Joseph B. Mazzola, 1989. "Generalized Assignment with Nonlinear Capacity Interaction," Management Science, INFORMS, vol. 35(8), pages 923-941, August.
    7. E. Mijangos, 2015. "An algorithm for two-stage stochastic mixed-integer nonlinear convex problems," Annals of Operations Research, Springer, vol. 235(1), pages 581-598, December.
    8. Emmanuel Ogbe & Xiang Li, 2019. "A joint decomposition method for global optimization of multiscenario nonconvex mixed-integer nonlinear programs," Journal of Global Optimization, Springer, vol. 75(3), pages 595-629, November.
    9. WOLSEY, Laurence A., 1981. "Integer programming duality: price functions and sensitivity analysis," LIDAM Reprints CORE 431, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Gabriel Lopez Zenarosa & Oleg A. Prokopyev & Eduardo L. Pasiliao, 2021. "On exact solution approaches for bilevel quadratic 0–1 knapsack problem," Annals of Operations Research, Springer, vol. 298(1), pages 555-572, March.
    11. Ahmed Ghoniem & Tulay Flamand & Mohamed Haouari, 2016. "Optimization-Based Very Large-Scale Neighborhood Search for Generalized Assignment Problems with Location/Allocation Considerations," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 575-588, August.
    12. Yankai Cao & Victor M. Zavala, 2019. "A scalable global optimization algorithm for stochastic nonlinear programs," Journal of Global Optimization, Springer, vol. 75(2), pages 393-416, October.
    13. Xiang Li & Asgeir Tomasgard & Paul I. Barton, 2011. "Nonconvex Generalized Benders Decomposition for Stochastic Separable Mixed-Integer Nonlinear Programs," Journal of Optimization Theory and Applications, Springer, vol. 151(3), pages 425-454, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Can Li & Ignacio E. Grossmann, 2019. "A generalized Benders decomposition-based branch and cut algorithm for two-stage stochastic programs with nonconvex constraints and mixed-binary first and second stage variables," Journal of Global Optimization, Springer, vol. 75(2), pages 247-272, October.
    2. Jia-Jiang Lin & Feng Xu & Xiong-Lin Luo, 2023. "Nonconvex sensitivity-based generalized Benders decomposition," Journal of Global Optimization, Springer, vol. 86(1), pages 37-60, May.
    3. Andrew Allman & Qi Zhang, 2021. "Branch-and-price for a class of nonconvex mixed-integer nonlinear programs," Journal of Global Optimization, Springer, vol. 81(4), pages 861-880, December.
    4. Can Li & Ignacio E. Grossmann, 2019. "A finite $$\epsilon $$ϵ-convergence algorithm for two-stage stochastic convex nonlinear programs with mixed-binary first and second-stage variables," Journal of Global Optimization, Springer, vol. 75(4), pages 921-947, December.
    5. Mutsunori Yagiura & Toshihide Ibaraki & Fred Glover, 2004. "An Ejection Chain Approach for the Generalized Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 16(2), pages 133-151, May.
    6. Bożena Staruch & Bogdan Staruch, 2021. "Competence-based assignment of tasks to workers in factories with demand-driven manufacturing," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(2), pages 553-565, June.
    7. Pessoa, Artur Alves & Hahn, Peter M. & Guignard, Monique & Zhu, Yi-Rong, 2010. "Algorithms for the generalized quadratic assignment problem combining Lagrangean decomposition and the Reformulation-Linearization Technique," European Journal of Operational Research, Elsevier, vol. 206(1), pages 54-63, October.
    8. Subhash C. Sarin & Hanif D. Sherali & Seon Ki Kim, 2014. "A branch‐and‐price approach for the stochastic generalized assignment problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(2), pages 131-143, March.
    9. Drexl, Andreas & Jørnsten, Kurt, 2007. "Pricing the generalized assignment problem," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 627, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    10. Marius Posta & Jacques Ferland & Philippe Michelon, 2012. "An exact method with variable fixing for solving the generalized assignment problem," Computational Optimization and Applications, Springer, vol. 52(3), pages 629-644, July.
    11. Alberto Ceselli & Giovanni Righini, 2006. "A Branch-and-Price Algorithm for the Multilevel Generalized Assignment Problem," Operations Research, INFORMS, vol. 54(6), pages 1172-1184, December.
    12. Jeet, V. & Kutanoglu, E., 2007. "Lagrangian relaxation guided problem space search heuristics for generalized assignment problems," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1039-1056, November.
    13. Yagiura, Mutsunori & Ibaraki, Toshihide & Glover, Fred, 2006. "A path relinking approach with ejection chains for the generalized assignment problem," European Journal of Operational Research, Elsevier, vol. 169(2), pages 548-569, March.
    14. Haddadi, Salim & Ouzia, Hacene, 2004. "Effective algorithm and heuristic for the generalized assignment problem," European Journal of Operational Research, Elsevier, vol. 153(1), pages 184-190, February.
    15. Ahmed Ghoniem & Tulay Flamand & Mohamed Haouari, 2016. "Exact Solution Methods for a Generalized Assignment Problem with Location/Allocation Considerations," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 589-602, August.
    16. Salim Haddadi, 2019. "Variable-fixing then subgradient optimization guided very large scale neighborhood search for the generalized assignment problem," 4OR, Springer, vol. 17(3), pages 261-295, September.
    17. Li, Jing-Quan & Borenstein, Denis & Mirchandani, Pitu B., 2008. "Truck scheduling for solid waste collection in the City of Porto Alegre, Brazil," Omega, Elsevier, vol. 36(6), pages 1133-1149, December.
    18. Joseph B. Mazzola & Alan W. Neebe, 2012. "A generalized assignment model for dynamic supply chain capacity planning," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(6), pages 470-485, September.
    19. M Büther, 2010. "Reducing the elastic generalized assignment problem to the standard generalized assignment problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(11), pages 1582-1595, November.
    20. Ogbe, Emmanuel & Li, Xiang, 2017. "A new cross decomposition method for stochastic mixed-integer linear programming," European Journal of Operational Research, Elsevier, vol. 256(2), pages 487-499.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:91:y:2025:i:1:d:10.1007_s10898-024-01433-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.