IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v29y2015i2p313-324.html
   My bibliography  Save this article

Validation of an Ideal Rainfall-Runoff Chain in a GCM Environment

Author

Listed:
  • Klaus Fraedrich
  • Frank Sielmann
  • Danlu Cai
  • Ling Zhang
  • Xiuhua Zhu

Abstract

A biased coinflip Ansatz provides a stochastic regional scale land surface climate model of minimum complexity, which represents physical and stochastic properties of an ideal rainfall–runoff chain. The solution yields the empirically derived Schreiber formula as an Arrhenius-type equation of state W = exp(−D). It is associated with two thresholds and combines river runoff Ro, precipitation P and potential evaporation N as flux ratios, which represent water efficiency, W = Ro/P, and vegetation states, D = N/P. This stochastic rainfall–runoff chain is analyzed utilizing a global climate model (GCM) environment. The following results are obtained for present and future climate settings: (i) The climate mean rainfall-runoff chain is validated in terms of consistency and predictability, which demonstrate the stochastic rainfall–runoff chain to be a viable surrogate model for simulating means and variability of regional climates. (ii) Climate change is analyzed in terms of runoff sensitivity/elasticity and attribution measures. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Klaus Fraedrich & Frank Sielmann & Danlu Cai & Ling Zhang & Xiuhua Zhu, 2015. "Validation of an Ideal Rainfall-Runoff Chain in a GCM Environment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 313-324, January.
  • Handle: RePEc:spr:waterr:v:29:y:2015:i:2:p:313-324
    DOI: 10.1007/s11269-014-0703-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-014-0703-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-014-0703-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinjin Gu & Mo Li & Ping Guo & Guohe Huang, 2016. "Risk Assessment for Ecological Planning of Arid Inland River Basins Under Hydrological and Management Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1415-1431, March.
    2. Jinjin Gu & Mo Li & Ping Guo & Guohe Huang, 2016. "Risk Assessment for Ecological Planning of Arid Inland River Basins Under Hydrological and Management Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1415-1431, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:29:y:2015:i:2:p:313-324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.