IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v29y2015i1p161-179.html
   My bibliography  Save this article

Assessing Financial Loss due to Pluvial Flooding and the Efficacy of Risk-Reduction Measures in the Residential Property Sector

Author

Listed:
  • Janez Sušnik
  • Clemens Strehl
  • Luuk Postmes
  • Lydia Vamvakeridou-Lyroudia
  • Hans-Joachim Mälzer
  • Dragan Savić
  • Zoran Kapelan

Abstract

A novel quantitative risk assessment for residential properties at risk of pluvial flooding in Eindhoven, The Netherlands, is presented. A hydraulic model belonging to Eindhoven was forced with low return period rainfall events (2, 5 and 10-year design rainfalls). Three scenarios were analysed for each event: a baseline and two risk-reduction scenarios. GIS analysis identified areas where risk-reduction measures had the greatest impact. Financial loss calculations were carried out using fixed-threshold and probabilistic approaches. Under fixed-threshold assessment, per-event Expected Annual Damage (EAD) reached €38.2 m, with reductions of up to €454,000 resulting from risk-reduction measures. Present costs of flooding reach €1.43bn when calculated over a 50-year period. All net-present value figures for the risk-reduction measures are negative. Probabilistic assessment yielded EAD values up to more than double those of the fixed-threshold analysis which suggested positive net-present value. To the best of our knowledge, the probabilistic method based on the distribution of doorstep heights has never before been introduced for pluvial flood risk assessment. Although this work suggests poor net-present value of risk-reduction measures, indirect impacts of flooding, damage to infrastructure and the potential impacts of climate change were omitted. This work represents a useful first step in helping Eindhoven prepare for future pluvial flooding. The analysis is based on software and tools already available at the municipality, eliminating the need for software upgrading or training. The approach is generally applicable to similar cities. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Janez Sušnik & Clemens Strehl & Luuk Postmes & Lydia Vamvakeridou-Lyroudia & Hans-Joachim Mälzer & Dragan Savić & Zoran Kapelan, 2015. "Assessing Financial Loss due to Pluvial Flooding and the Efficacy of Risk-Reduction Measures in the Residential Property Sector," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 161-179, January.
  • Handle: RePEc:spr:waterr:v:29:y:2015:i:1:p:161-179
    DOI: 10.1007/s11269-014-0833-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-014-0833-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-014-0833-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Ballesteros-Cánovas & M. Sanchez-Silva & J. Bodoque & A. Díez-Herrero, 2013. "An Integrated Approach to Flood Risk Management: A Case Study of Navaluenga (Central Spain)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3051-3069, June.
    2. H. Moel & J. Aerts, 2011. "Effect of uncertainty in land use, damage models and inundation depth on flood damage estimates," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 407-425, July.
    3. Wim Kellens & Wouter Vanneuville & Els Verfaillie & Ellen Meire & Pieter Deckers & Philippe Maeyer, 2013. "Flood Risk Management in Flanders: Past Developments and Future Challenges," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3585-3606, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seyed M. H. S. Rezvani & Maria João Falcão Silva & Nuno Marques de Almeida, 2024. "Urban Resilience Index for Critical Infrastructure: A Scenario-Based Approach to Disaster Risk Reduction in Road Networks," Sustainability, MDPI, vol. 16(10), pages 1-41, May.
    2. Sandra Costa & Rik Peters & Ricardo Martins & Luuk Postmes & Jan Jacob Keizer & Peter Roebeling, 2021. "Effectiveness of Nature-Based Solutions on Pluvial Flood Hazard Mitigation: The Case Study of the City of Eindhoven (The Netherlands)," Resources, MDPI, vol. 10(3), pages 1-14, March.
    3. Ambika Markanday & Ibon Galarraga & Anil Markandya, 2019. "A Critical Review Of Cost-Benefit Analysis For Climate Change Adaptation In Cities," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 1-31, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. Molinari & G. Minucci & M. Mendoza & T. Simonelli, 2016. "Implementing the European “Floods Directive”: the Case of the Po River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1739-1756, March.
    2. D. Molinari & G. Minucci & M. T. Mendoza & T. Simonelli, 2016. "Implementing the European “Floods Directive”: the Case of the Po River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1739-1756, March.
    3. Weijiang Li & Jiahong Wen & Bo Xu & Xiande Li & Shiqiang Du, 2018. "Integrated Assessment of Economic Losses in Manufacturing Industry in Shanghai Metropolitan Area Under an Extreme Storm Flood Scenario," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    4. Mohamed Kefi & Binaya Kumar Mishra & Yoshifumi Masago & Kensuke Fukushi, 2020. "Analysis of flood damage and influencing factors in urban catchments: case studies in Manila, Philippines, and Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2461-2487, December.
    5. Yus Budiyono & Jeroen Aerts & JanJaap Brinkman & Muh Marfai & Philip Ward, 2015. "Flood risk assessment for delta mega-cities: a case study of Jakarta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 389-413, January.
    6. T. D. Pol & S. Gabbert & H.-P. Weikard & E. C. Ierland & E. M. T. Hendrix, 2017. "A Minimax Regret Analysis of Flood Risk Management Strategies Under Climate Change Uncertainty and Emerging Information," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(4), pages 1087-1109, December.
    7. Animesh Gain & Vahid Mojtahed & Claudio Biscaro & Stefano Balbi & Carlo Giupponi, 2015. "An integrated approach of flood risk assessment in the eastern part of Dhaka City," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1499-1530, December.
    8. Anna Rita Scorzini & Maurizio Leopardi, 2017. "River basin planning: from qualitative to quantitative flood risk assessment: the case of Abruzzo Region (central Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 71-93, August.
    9. Lorenzo Carrera & Gabriele Standardi & Francesco Bosello & Jaroslav Mysiak, 2014. "Assessing Direct and Indirect Economic Impacts of a Flood Event Through the Integration of Spatial and Computable General Equilibrium Modelling," Working Papers 2014.82, Fondazione Eni Enrico Mattei.
    10. Po-Kuan Chiang & Patrick Willems, 2013. "Model Conceptualization Procedure for River (Flood) Hydraulic Computations: Case Study of the Demer River, Belgium," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(12), pages 4277-4289, September.
    11. Dries Hegger & Peter Driessen & Carel Dieperink & Mark Wiering & G. Raadgever & Helena Rijswick, 2014. "Assessing Stability and Dynamics in Flood Risk Governance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4127-4142, September.
    12. Johannes G. Leskens & Christian Kehl & Tim Tutenel & Timothy Kol & Gerwin de Haan & Guus Stelling & Elmar Eisemann, 2017. "An interactive simulation and visualization tool for flood analysis usable for practitioners," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(2), pages 307-324, February.
    13. Ignacio Fraga & Luis Cea & Jerónimo Puertas, 2020. "MERLIN: a flood hazard forecasting system for coastal river reaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(3), pages 1171-1193, February.
    14. Joanna Nowak Da Costa & Beata Calka & Elzbieta Bielecka, 2021. "Urban Population Flood Impact Applied to a Warsaw Scenario," Resources, MDPI, vol. 10(6), pages 1-17, June.
    15. Wim Kellens & Wouter Vanneuville & Els Verfaillie & Ellen Meire & Pieter Deckers & Philippe Maeyer, 2013. "Flood Risk Management in Flanders: Past Developments and Future Challenges," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3585-3606, August.
    16. Rosa Fernández Ropero & María Julia Flores & Rafael Rumí, 2022. "Bayesian Networks for Preprocessing Water Management Data," Mathematics, MDPI, vol. 10(10), pages 1-18, May.
    17. Unterberger, Christian & Hudson, Paul & Botzen, W.J. Wouter & Schroeer, Katharina & Steininger, Karl W., 2019. "Future Public Sector Flood Risk and Risk Sharing Arrangements: An Assessment for Austria," Ecological Economics, Elsevier, vol. 156(C), pages 153-163.
    18. Xin He & Simon Stisen & Marianne Wiese & Hans Henriksen, 2016. "Designing a Hydrological Real-Time System for Surface Water and Groundwater in Denmark with Engagement of Stakeholders," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1785-1802, March.
    19. Xinmeng Shan & Jiahong Wen & Min Zhang & Luyang Wang & Qian Ke & Weijiang Li & Shiqiang Du & Yong Shi & Kun Chen & Banggu Liao & Xiande Li & Hui Xu, 2019. "Scenario-Based Extreme Flood Risk of Residential Buildings and Household Properties in Shanghai," Sustainability, MDPI, vol. 11(11), pages 1-18, June.
    20. Pulong Ma & Georgios Karagiannis & Bledar A. Konomi & Taylor G. Asher & Gabriel R. Toro & Andrew T. Cox, 2022. "Multifidelity computer model emulation with high‐dimensional output: An application to storm surge," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 861-883, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:29:y:2015:i:1:p:161-179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.