Are Reservoirs Water Consumers or Water Collectors? Reflections on the Water Footprint Concept Applied on Reservoirs
Author
Abstract
Suggested Citation
DOI: 10.1007/s11269-015-1104-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- J. Maestre-Valero & D. Martínez-Granados & V. Martínez-Alvarez & J. Calatrava, 2013. "Socio-Economic Impact of Evaporation Losses from Reservoirs Under Past, Current and Future Water Availability Scenarios in the Semi-Arid Segura Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1411-1426, March.
- Strzepek, Kenneth M. & Yohe, Gary W. & Tol, Richard S.J. & Rosegrant, Mark W., 2008.
"The value of the high Aswan Dam to the Egyptian economy,"
Ecological Economics, Elsevier, vol. 66(1), pages 117-126, May.
- Kenneth M. Strzepek & Gary W. Yohe & Richard S.J. Tol & Mark Rosegrant, 2006. "The Value Of The High Aswan Dam To The Egyptian Economy," Working Papers FNU-111, Research unit Sustainability and Global Change, Hamburg University, revised Jun 2006.
- Gerbens-Leenes, P.W. & Hoekstra, A.Y. & van der Meer, Th., 2009. "The water footprint of energy from biomass: A quantitative assessment and consequences of an increasing share of bio-energy in energy supply," Ecological Economics, Elsevier, vol. 68(4), pages 1052-1060, February.
- Julian Fulton & Heather Cooley & Peter Gleick, 2014. "Water Footprint Outcomes and Policy Relevance Change with Scale Considered: Evidence from California," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3637-3649, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rui Shu & Xinchun Cao & Mengyang Wu, 2021. "Clarifying Regional Water Scarcity in Agriculture based on the Theory of Blue, Green and Grey Water Footprints," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 1101-1118, February.
- Arjen Y. Hoekstra, 2017. "Water Footprint Assessment: Evolvement of a New Research Field," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3061-3081, August.
- Tor Haakon Bakken & Christian Almestad & Jørgen Melhuus Rugelbak & Marisa Escobar & Steven Micko & Knut Alfredsen, 2016. "Climate Change and Increased Irrigation Demands: What Is Left for Hydropower Generation? Results from Two Semi-Arid Basins," Energies, MDPI, vol. 9(3), pages 1-19, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dinar, Ariel, 2012. "Economy-wide implications of direct and indirect policy interventions in the water sector: lessons from recent work and future research needs," Policy Research Working Paper Series 6068, The World Bank.
- White, David J. & Hubacek, Klaus & Feng, Kuishuang & Sun, Laixiang & Meng, Bo, 2018. "The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis," Applied Energy, Elsevier, vol. 210(C), pages 550-567.
- Sheila M. Olmstead & Hilary Sigman, 2015.
"Damming the Commons: An Empirical Analysis of International Cooperation and Conflict in Dam Location,"
Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(4), pages 497-526.
- Olmstead, Sheila M. & Sigman, Hilary, 2014. "Damming the Commons: An Empirical Analysis of International Cooperation and Conflict in Dam Location," RFF Working Paper Series dp-14-23-rev, Resources for the Future.
- Olmstead, Sheila M. & Sigman, Hilary, 2014. "Damming the Commons: An Empirical Analysis of International Cooperation and Conflict in Dam Location," RFF Working Paper Series dp-14-23, Resources for the Future.
- Sheila M. Olmstead & Hilary Sigman, 2014. "Damming the Commons: An Empirical Analysis of International Cooperation and Conflict in Dam Location," NBER Working Papers 20389, National Bureau of Economic Research, Inc.
- Olmstead, Sheila M. & Sigman, Hilary, 2014. "Damming the commons : an empirical analysis of international cooperation and conflict in dam location," Policy Research Working Paper Series 6992, The World Bank.
- Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
- Tan, Raymond R. & Aviso, Kathleen B. & Barilea, Ivan U. & Culaba, Alvin B. & Cruz, Jose B., 2012. "A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints," Applied Energy, Elsevier, vol. 90(1), pages 154-160.
- Victor Nechifor & Matthew Winning, 2017.
"The impacts of higher CO2 concentrations over global crop production and irrigation water requirements,"
EcoMod2017
10487, EcoMod.
- Nechifor, Victor & Winning, Matthew, 2017. "The impacts of higher CO2 concentrations over global crop production and irrigation water requirements," Conference papers 332837, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
- Zhang, Ping & Zhuo, La & Li, Meng & Liu, Yilin & Wu, Pute, 2023. "Assessment of advanced bioethanol potential under water and land resource constraints in China," Renewable Energy, Elsevier, vol. 212(C), pages 359-371.
- María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.
- Nackley, Lloyd L. & Vogt, Kristiina A. & Kim, Soo-Hyung, 2014. "Arundo donax water use and photosynthetic responses to drought and elevated CO2," Agricultural Water Management, Elsevier, vol. 136(C), pages 13-22.
- Gohar, Abdelaziz A. & Ward, Frank A., 2010. "Gains from expanded irrigation water trading in Egypt: An integrated basin approach," Ecological Economics, Elsevier, vol. 69(12), pages 2535-2548, October.
- Dritan Osmani, "undated". "A note on optimal transfer schemes, stable coalition for environmental protection and joint maximization assumption," Working Papers FNU-176, Research unit Sustainability and Global Change, Hamburg University.
- Dellink, Rob & Brouwer, Roy & Linderhof, Vincent & Stone, Karin, 2011. "Bio-economic modeling of water quality improvements using a dynamic applied general equilibrium approach," Ecological Economics, Elsevier, vol. 71(C), pages 63-79.
- Ward, Frank A., 2023. "Innovations for the Water Resource Economics Curriculum: Training the Next Generation," Applied Economics Teaching Resources (AETR), Agricultural and Applied Economics Association, vol. 5(3), September.
- Liu, Yitong & Chen, Bin & Wei, Wendong & Shao, Ling & Li, Zhi & Jiang, Weizhong & Chen, Guoqian, 2020. "Global water use associated with energy supply, demand and international trade of China," Applied Energy, Elsevier, vol. 257(C).
- Hoekman, S. Kent & Broch, Amber & Liu, Xiaowei (Vivian), 2018. "Environmental implications of higher ethanol production and use in the U.S.: A literature review. Part I – Impacts on water, soil, and air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3140-3158.
- Scherer, Laura & Pfister, Stephan, 2016. "Global water footprint assessment of hydropower," Renewable Energy, Elsevier, vol. 99(C), pages 711-720.
- Farajiamiri, Mina & Meyer, Jörn-Christian & Walther, Grit, 2023. "Multi-objective optimization of renewable fuel supply chains regarding cost, land use, and water use," Applied Energy, Elsevier, vol. 349(C).
- Saeed Hadian & Kaveh Madani, 2013. "The Water Demand of Energy: Implications for Sustainable Energy Policy Development," Sustainability, MDPI, vol. 5(11), pages 1-14, November.
- Rodriguez, Renata del G. & Scanlon, Bridget R. & King, Carey W. & Scarpare, Fabio V. & Xavier, Alexandre C. & Pruski, Fernando F., 2018. "Biofuel-water-land nexus in the last agricultural frontier region of the Brazilian Cerrado," Applied Energy, Elsevier, vol. 231(C), pages 1330-1345.
- Wu, Zitao & Zhai, Haibo, 2021. "Consumptive life cycle water use of biomass-to-power plants with carbon capture and sequestration," Applied Energy, Elsevier, vol. 303(C).
More about this item
Keywords
Water footprint; Reservoirs; Hydropower;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:29:y:2015:i:14:p:4919-4926. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.