IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v29y2015i12p4427-4445.html
   My bibliography  Save this article

Flood Vulnerability Analysis by Fuzzy Spatial Multi Criteria Decision Making

Author

Listed:
  • Ahamd Radmehr
  • Shahab Araghinejad

Abstract

Prioritization the sub-basins available in a basin to flood vulnerability analysis can be discussed in the form of a spatial multi criteria decision making (SMCDM) problem. In this research a fuzzy planning support system based on the spatial analysis using tow multi criteria decision making methods, Analytic Hierarchy Process (AHP) and TOPSIS (Technique for order-preference by similarity to ideal solution) is used. AHP method is used to determine the structure of decision making process and to estimate criteria weights and TOPSIS model is used to rank the sub-basins of Tehran urban basin as a study area regarding the flood vulnerable areas. Also in order to perform spatial analysis for decision-making process, a developed toolbox is used within the Geographic Information System (GIS). In this research a model is presented in which some vague concepts such as weight of decision making criteria are expressed in the form of linguistic variables to be converted to triangular fuzzy numbers. Finally, the sensitivity of model was analyzed by changing the weights of decision making criteria and providing of ranking scenarios. The results show the optimum alternatives for mitigation flood vulnerability in the study area. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Ahamd Radmehr & Shahab Araghinejad, 2015. "Flood Vulnerability Analysis by Fuzzy Spatial Multi Criteria Decision Making," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4427-4445, September.
  • Handle: RePEc:spr:waterr:v:29:y:2015:i:12:p:4427-4445
    DOI: 10.1007/s11269-015-1068-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-015-1068-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-015-1068-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Islam & Rehan Sadiq & Manuel Rodriguez & Homayoun Najjaran & Alex Francisque & Mina Hoorfar, 2013. "Evaluating Water Quality Failure Potential in Water Distribution Systems: A Fuzzy-TOPSIS-OWA-based Methodology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2195-2216, May.
    2. Hao Fanghua & Chen Guanchun, 2010. "A Fuzzy Multi-Criteria Group Decision-Making Model Based on Weighted Borda Scoring Method for Watershed Ecological Risk Management: a Case Study of Three Gorges Reservoir Area of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2139-2165, August.
    3. B. Srdjevic & Y. Medeiros & A. Faria, 2004. "An Objective Multi-Criteria Evaluation of Water Management Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(1), pages 35-54, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yasser Ebrahimian Ghajari & Ali Asghar Alesheikh & Mahdi Modiri & Reza Hosnavi & Morteza Abbasi, 2017. "Spatial Modelling of Urban Physical Vulnerability to Explosion Hazards Using GIS and Fuzzy MCDA," Sustainability, MDPI, vol. 9(7), pages 1-29, July.
    2. Behnam Ghasemzadeh & Zahra Sadat Saeideh Zarabadi & Hamid Majedi & Mostafa Behzadfar & Ayyoob Sharifi, 2021. "A Framework for Urban Flood Resilience Assessment with Emphasis on Social, Economic and Institutional Dimensions: A Qualitative Study," Sustainability, MDPI, vol. 13(14), pages 1-27, July.
    3. Seong Yun Cho & Heejun Chang, 2017. "Recent research approaches to urban flood vulnerability, 2006–2016," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 633-649, August.
    4. Mahmoud Rezaei & Farshad Amiraslani & Najmeh Neysani Samani & Kazem Alavipanah, 2020. "Application of two fuzzy models using knowledge-based and linear aggregation approaches to identifying flooding-prone areas in Tehran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 363-385, January.
    5. Ali Azarnivand & Arash Malekian, 2016. "Analysis of Flood Risk Management Strategies Based on a Group Decision Making Process via Interval-Valued Intuitionistic Fuzzy Numbers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(6), pages 1903-1921, April.
    6. Ming Zhong & Jiao Wang & Liang Gao & Kairong Lin & Yang Hong, 2019. "Fuzzy Risk Assessment of Flash Floods Using a Cloud-Based Information Diffusion Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2537-2553, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Toosi & J. Samani, 2012. "Evaluating Water Transfer Projects Using Analytic Network Process (ANP)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 1999-2014, May.
    2. Tang, Kayu & Parsons, David J. & Jude, Simon, 2019. "Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 24-36.
    3. Hajkowicz, Stefan & Higgins, Andrew, 2008. "A comparison of multiple criteria analysis techniques for water resource management," European Journal of Operational Research, Elsevier, vol. 184(1), pages 255-265, January.
    4. Serafim Opricovic, 2009. "A Compromise Solution in Water Resources Planning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1549-1561, June.
    5. Rocine Carvalho & Alessandra Magrini, 2006. "Conflicts over Water Resource Management in Brazil: A Case Study of Inter-Basin Transfers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(2), pages 193-213, April.
    6. Daeryong Park & Huan-Jung Fan & Jun-Jie Zhu & Taesoon Kim & Myoung-Jin Um & Siyeon Kim & Seol Jeon & Kichul Jung, 2021. "Prioritization in Strategic Environmental Assessment Using Fuzzy TOPSIS Method with Random Generation for Absent Information in South Korea," Sustainability, MDPI, vol. 13(3), pages 1-16, January.
    7. Łatuszyńska Anna, 2014. "Multiple-Criteria Decision Analysis Using Topsis Method For Interval Data In Research Into The Level Of Information Society Development," Folia Oeconomica Stetinensia, Sciendo, vol. 13(2), pages 63-76, July.
    8. Cem P. Cetinkaya & Mert Can Gunacti, 2018. "Multi-Criteria Analysis of Water Allocation Scenarios in a Water Scarce Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2867-2884, June.
    9. Gorsevski, Pece V. & Cathcart, Steven C. & Mirzaei, Golrokh & Jamali, Mohsin M. & Ye, Xinyue & Gomezdelcampo, Enrique, 2013. "A group-based spatial decision support system for wind farm site selection in Northwest Ohio," Energy Policy, Elsevier, vol. 55(C), pages 374-385.
    10. José Ribas, 2014. "An Assessment of Conflicting Intentions in the Use of Multipurpose Water Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 3989-4000, September.
    11. Raoof Mostafazadeh & Amir Sadoddin & Abdolreza Bahremand & Vahed Berdi Sheikh & Arash Zare Garizi, 2017. "Scenario analysis of flood control structures using a multi-criteria decision-making technique in Northeast Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1827-1846, July.
    12. Mehrdad Ghorbani Mooselu & Mohammad Reza Nikoo & Nooshin Bakhtiari Rayani & Azizallah Izady, 2019. "Fuzzy Multi-Objective Simulation-Optimization of Stepped Spillways Considering Flood Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2261-2275, May.
    13. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Khalifah, Zainab & Zakuan, Norhayati & Jusoh, Ahmad & Nor, Khalil Md & Khoshnoudi, Masoumeh, 2017. "A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 216-256.
    14. Georgios K. Koulinas & Olympia E. Demesouka & Konstantinos A. Sidas & Dimitrios E. Koulouriotis, 2021. "A TOPSIS—Risk Matrix and Monte Carlo Expert System for Risk Assessment in Engineering Projects," Sustainability, MDPI, vol. 13(20), pages 1-14, October.
    15. Stefan Hajkowicz & Kerry Collins, 2007. "A Review of Multiple Criteria Analysis for Water Resource Planning and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(9), pages 1553-1566, September.
    16. Jarisch, Isabelle & Bödeker, Kai & Bingham, Logan Robert & Friedrich, Stefan & Kindu, Mengistie & Knoke, Thomas, 2022. "The influence of discounting ecosystem services in robust multi-objective optimization – An application to a forestry-avocado land-use portfolio," Forest Policy and Economics, Elsevier, vol. 141(C).
    17. Deepti Rani & Maria Moreira, 2010. "Simulation–Optimization Modeling: A Survey and Potential Application in Reservoir Systems Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1107-1138, April.
    18. Kobryń Andrzej & Prystrom Joanna, 2016. "A Data Pre-Processing Model for the Topsis Method," Folia Oeconomica Stetinensia, Sciendo, vol. 16(2), pages 219-235, December.
    19. Elena Arce, María & Saavedra, Ángeles & Míguez, José L. & Granada, Enrique, 2015. "The use of grey-based methods in multi-criteria decision analysis for the evaluation of sustainable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 924-932.
    20. Jenq-Tzong Shiau & Hui-Ting Hsu, 2016. "Suitability of ANN-Based Daily Streamflow Extension Models: a Case Study of Gaoping River Basin, Taiwan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1499-1513, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:29:y:2015:i:12:p:4427-4445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.