IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v28y2014i7p1907-1920.html
   My bibliography  Save this article

Preliminary Assessment of Rainwater Harvesting Potential in Nigeria: Focus on Flood Mitigation and Domestic Water Supply

Author

Listed:
  • Chidozie Nnaji
  • Nnennaya Mama

Abstract

This study was accomplished using 26 locations in the major ecological zones of Nigeria as well as different classes of residential buildings and different levels of water consumption. For each location, house dwelling class and level of water consumption, a water balance approach was used to assess the proportion of water demand that can be met by rainwater. Results obtained indicate that for all the locations in the rainforest zone and some parts in the guinea savanna zone, over eighty percent (80 %) of water demand of those living in bungalows can be met by rainwater. Rainwater harvesting potential was found to be a power function of rainfall coefficient of variation, with coefficient α and exponent β. High correlation coefficients (0.881 ≤ R 2 ≤ 1) were obtained between coefficient α and roof area per capita. Also, high correlation coefficients (0.847 ≤ R 2 ≤ 0.992) were obtained between exponent β and roof area per capita. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Chidozie Nnaji & Nnennaya Mama, 2014. "Preliminary Assessment of Rainwater Harvesting Potential in Nigeria: Focus on Flood Mitigation and Domestic Water Supply," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1907-1920, May.
  • Handle: RePEc:spr:waterr:v:28:y:2014:i:7:p:1907-1920
    DOI: 10.1007/s11269-014-0579-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-014-0579-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-014-0579-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olanike Aladenola & Omotayo Adeboye, 2010. "Assessing the Potential for Rainwater Harvesting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2129-2137, August.
    2. H. Ishaku & M. Majid & Foziah Johar, 2012. "Rainwater Harvesting: An Alternative to Safe Water Supply in Nigerian Rural Communities," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 295-305, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. Hathaway & W. Hunt & D. McCarthy, 2015. "Variability of Intra-event Statistics for Multiple Fecal Indicator Bacteria in Urban Stormwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3635-3649, August.
    2. Sohail Abbas & Muhammad Junaid Mahmood & Muhammad Yaseen, 2021. "Assessing the potential for rooftop rainwater harvesting and its physio and socioeconomic impacts, Rawal watershed, Islamabad, Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17942-17963, December.
    3. Obiora B. Ezeudu & Tochukwu S. Ezeudu & Uzochukwu C. Ugochukwu & Obiageli J. Okolo & Chinedu D. Ani & Agbaji P. Ajogu & Charles C. Ajaero & Uchenna I. Mbakwe & Nixon N. Nduji, 2022. "Coping Strategies, Cultural Practices and Policy Implications on Domestic Water Supply in an Erosion Susceptible Rural Community, Nigeria," Resources, MDPI, vol. 11(8), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enedir Ghisi & Pedro Schondermark, 2013. "Investment Feasibility Analysis of Rainwater Use in Residences," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2555-2576, May.
    2. Uende Gomes & Léo Heller & João Pena, 2012. "A National Program for Large Scale Rainwater Harvesting: An Individual or Public Responsibility?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2703-2714, July.
    3. Imteaz, Monzur Alam & Paudel, Upendra & Ahsan, Amimul & Santos, Cristina, 2015. "Climatic and spatial variability of potential rainwater savings for a large coastal city," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 143-147.
    4. Khamis Naba Sayl & Nur Shazwani Muhammad & Zaher Mundher Yaseen & Ahmed El-shafie, 2016. "Estimation the Physical Variables of Rainwater Harvesting System Using Integrated GIS-Based Remote Sensing Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3299-3313, July.
    5. Q. Tan & G. Huang & Y. Cai, 2013. "Multi-Source Multi-Sector Sustainable Water Supply Under Multiple Uncertainties: An Inexact Fuzzy-Stochastic Quadratic Programming Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 451-473, January.
    6. Kwangsik Jung & Taeseop Lee & Byeong Choi & Seungkwan Hong, 2015. "Rainwater Harvesting System for Contiunous Water Supply to the Regions with High Seasonal Rainfall Variations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 961-972, February.
    7. Lúcio Proença & Enedir Ghisi, 2013. "Assessment of Potable Water Savings in Office Buildings Considering Embodied Energy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 581-599, January.
    8. Gabriel Yoshino & Lindemberg Fernandes & Júnior Ishihara & Adnilson Silva, 2014. "Use of rainwater for non-potable purposes in the Amazon," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(2), pages 431-442, April.
    9. Campisano, Alberto & Modica, Carlo, 2012. "Optimal sizing of storage tanks for domestic rainwater harvesting in Sicily," Resources, Conservation & Recycling, Elsevier, vol. 63(C), pages 9-16.
    10. Dagnachew Adugna & Marina Bergen Jensen & Brook Lemma & Geremew Sahilu Gebrie, 2018. "Assessing the Potential for Rooftop Rainwater Harvesting from Large Public Institutions," IJERPH, MDPI, vol. 15(2), pages 1-11, February.
    11. Monzur Alam Imteaz & Vassiliki Boulomytis, 2022. "Improvement of Rainwater Harvesting Analysis Through an Hourly Timestep Model in Comparison with a Daily Timestep Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2611-2622, June.
    12. Chen Shiguang & Zeng Haoxin & Sun Hongwei & Liu Song & Yang Yongmin, 2024. "How to determine the cistern volume of rainwater harvesting system: an analytical solution based on roof areas and water demands," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 20413-20438, August.
    13. Shiguang Chen & Hongwei Sun & Qiuli Chen & Song Liu & Xuebin Chen, 2023. "An Innovative Approach to Predicting the Financial Prospects of a Rainwater Harvesting System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3169-3185, June.
    14. P. Londra & A. Theocharis & E. Baltas & V. Tsihrintzis, 2015. "Optimal Sizing of Rainwater Harvesting Tanks for Domestic Use in Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4357-4377, September.
    15. Carvalho, Isabella de Castro & Calijuri, Maria Lúcia & Assemany, Paula Peixoto & Silva, Marcos Dornelas Freitas Machado e & Moreira Neto, Ronan Fernandes & Santiago, Aníbal da Fonseca & de Souza, Maur, 2013. "Sustainable airport environments: A review of water conservation practices in airports," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 27-36.
    16. Md. Islam & F. Chou & M. Kabir & C. Liaw, 2010. "Rainwater: A Potential Alternative Source for Scarce Safe Drinking and Arsenic Contaminated Water in Bangladesh," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 3987-4008, November.
    17. Siti Nazahiyah Rahmat & Aziman Madun & Azra Munirah Mat Daud & Mohammad Sukri Mustapa & Mohammad Sukri Mustapa & Mohammad Mohammad Erwan Zaki Mat Radzi & Mohd Zainizan Sahdan & Amir Hashim Mohd Kassim, 2021. "Integrated Rainwater Harvesting (Rwh) And Groundwater System For Domestic Water Supply," INWASCON Technology Magazine(i-TECH MAG), Zibeline International Publishing, vol. 3, pages 27-30, April.
    18. Annah Ndeketeya & Morgan Dundu, 2021. "Application of HEC-HMS Model for Evaluation of Rainwater Harvesting Potential in a Semi-arid City," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4217-4232, September.
    19. Brianda Hernandez Rosales & Alexandra Lutz, 2023. "Assessing the Feasibility of Rooftop Rainwater Harvesting for Food Production in Northwestern Arizona on the Hualapai Indian Reservation," Sustainability, MDPI, vol. 15(4), pages 1-16, February.
    20. Okoye, Chiemeka Onyeka & Solyalı, Oğuz & Akıntuğ, Bertuğ, 2015. "Optimal sizing of storage tanks in domestic rainwater harvesting systems: A linear programming approach," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 131-140.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:28:y:2014:i:7:p:1907-1920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.