IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v27y2013i10p3631-3645.html
   My bibliography  Save this article

GIS-Based Spatial Monte Carlo Analysis for Integrated Flood Management with Two Dimensional Flood Simulation

Author

Listed:
  • Honghai Qi
  • Pu Qi
  • M. Altinakar

Abstract

Spatial Monte Carlo Analysis (SMCA) is a newly developed Multi-Criteria Decision Making (MCDM) technique based on Spatial Compromise Programming (SCP) and Monte Carlo Simulation (MCS) technique. In contrast to other conventional MCDM techniques, SMCA has the ability to address uneven spatial distribution of criteria values in the evaluation and ranking of alternatives under various uncertainties. Using this technique, a new flood management tool has been developed within the framework of widely used GIS software ArcGIS. This tool has a user friendly interface which allows construction of user defined criteria, running of SCP computations under uncertain impacting factors and visualization of results. This tool has also the ability to interact with and use of classified Remote Sensing (RS) image layers, and other GIS feature layers like census block boundaries for flood damage calculation and loss of life estimation. The 100-year flood management strategy for Oconee River near the City of Milledgeville, Georgia, USA is chosen as a case study to demonstrate the capabilities of the software. The test result indicates that this new SMCA tool provides a very versatile environment for spatial comparison of various flood mitigation alternatives by taking into account various uncertainties, which will greatly enhance the quality of the decision making process. This tool can also be easily modified and implemented for solving a large variety of problems related to natural resources planning and management. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Honghai Qi & Pu Qi & M. Altinakar, 2013. "GIS-Based Spatial Monte Carlo Analysis for Integrated Flood Management with Two Dimensional Flood Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3631-3645, August.
  • Handle: RePEc:spr:waterr:v:27:y:2013:i:10:p:3631-3645
    DOI: 10.1007/s11269-013-0370-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-013-0370-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-013-0370-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dhruvesh Patel & Prashant Srivastava, 2013. "Flood Hazards Mitigation Analysis Using Remote Sensing and GIS: Correspondence with Town Planning Scheme," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2353-2368, May.
    2. Zbigniew Kundzewicz & Yukiko Hirabayashi & Shinjiro Kanae, 2010. "River Floods in the Changing Climate—Observations and Projections," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2633-2646, September.
    3. Yamei Wang & Zhongwu Li & Zhenghong Tang & Guangming Zeng, 2011. "A GIS-Based Spatial Multi-Criteria Approach for Flood Risk Assessment in the Dongting Lake Region, Hunan, Central China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3465-3484, October.
    4. J. Yazdi & S. Salehi Neyshabouri, 2012. "A Simulation-Based Optimization Model for Flood Management on a Watershed Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4569-4586, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sandeep Samantaray & Abinash Sahoo, 2024. "Prediction of flow discharge in Mahanadi River Basin, India, based on novel hybrid SVM approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 18699-18723, July.
    2. Guangming Yu & Sa Wang & Qiwu Yu & Lei Wu & Yong Fan & Xiaoli He & Xia Zhou & Huanhuan Jia & Shu Zhang & Xiaojuan Tian, 2014. "The Regional Limit of Flood-Bearing Capability: A Theoretical Model and Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1921-1936, May.
    3. Mariamawit Borga & Burak F. Tanyu & Celso M. Ferreira & Juan L. Garzon & Michael Onufrychuk, 2017. "A geospatial framework to estimate depth of scour under buildings due to storm surge in coastal areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1285-1311, July.
    4. Chaochao Li & Xiaotao Cheng & Na Li & Xiaohe Du & Qian Yu & Guangyuan Kan, 2016. "A Framework for Flood Risk Analysis and Benefit Assessment of Flood Control Measures in Urban Areas," IJERPH, MDPI, vol. 13(8), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akiko Masuya & Ashraf Dewan & Robert Corner, 2015. "Population evacuation: evaluating spatial distribution of flood shelters and vulnerable residential units in Dhaka with geographic information systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1859-1882, September.
    2. Bandi Aneesha Satya & Meshapam Shashi & Deva Pratap, 2019. "A geospatial approach to flash flood hazard mapping in the city of Warangal, Telangana, India," Environmental & Socio-economic Studies, Sciendo, vol. 7(3), pages 1-13, September.
    3. Omid Rahmati & Ali Haghizadeh & Stefanos Stefanidis, 2016. "Assessing the Accuracy of GIS-Based Analytical Hierarchy Process for Watershed Prioritization; Gorganrood River Basin, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1131-1150, February.
    4. M. Ghanbarpour & Mohsen Saravi & Shokoufe Salimi, 2014. "Floodplain Inundation Analysis Combined with Contingent Valuation: Implications for Sustainable Flood Risk Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2491-2505, July.
    5. Shanshan Hu & Xiangjun Cheng & Demin Zhou & Hong Zhang, 2017. "GIS-based flood risk assessment in suburban areas: a case study of the Fangshan District, Beijing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1525-1543, July.
    6. Rei Itsukushima & Yohei Ogahara & Yuki Iwanaga & Tatsuro Sato, 2018. "Investigating the Influence of Various Stormwater Runoff Control Facilities on Runoff Control Efficiency in a Small Catchment Area," Sustainability, MDPI, vol. 10(2), pages 1-12, February.
    7. Md. Uzzal Mia & Tahmida Naher Chowdhury & Rabin Chakrabortty & Subodh Chandra Pal & Mohammad Khalid Al-Sadoon & Romulus Costache & Abu Reza Md. Towfiqul Islam, 2023. "Flood Susceptibility Modeling Using an Advanced Deep Learning-Based Iterative Classifier Optimizer," Land, MDPI, vol. 12(4), pages 1-26, April.
    8. Thomas D. Pol & Ekko C. Ierland & Silke Gabbert, 2017. "Economic analysis of adaptive strategies for flood risk management under climate change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(2), pages 267-285, February.
    9. Wen Zhang & Jing Li & Yunhao Chen & Yang Li, 2019. "A Surrogate-Based Optimization Design and Uncertainty Analysis for Urban Flood Mitigation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4201-4214, September.
    10. Caridad Ballesteros & José A. Jiménez & Christophe Viavattene, 2018. "A multi-component flood risk assessment in the Maresme coast (NW Mediterranean)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(1), pages 265-292, January.
    11. Stefanos Stefanidis & Dimitrios Stathis, 2013. "Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 569-585, September.
    12. Tusar Kanti Hembram & Sunil Saha, 2020. "Prioritization of sub-watersheds for soil erosion based on morphometric attributes using fuzzy AHP and compound factor in Jainti River basin, Jharkhand, Eastern India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1241-1268, February.
    13. Yanbo Duan & Yu Gary Gao & Yusen Zhang & Huawei Li & Zhonghui Li & Ziying Zhou & Guohang Tian & Yakai Lei, 2022. "“The 20 July 2021 Major Flood Event” in Greater Zhengzhou, China: A Case Study of Flooding Severity and Landscape Characteristics," Land, MDPI, vol. 11(11), pages 1-23, October.
    14. Ashraf Abdelkarim & Ahmed F. D. Gaber & Ibtesam I. Alkadi & Haya M. Alogayell, 2019. "Integrating Remote Sensing and Hydrologic Modeling to Assess the Impact of Land-Use Changes on the Increase of Flood Risk: A Case Study of the Riyadh–Dammam Train Track, Saudi Arabia," Sustainability, MDPI, vol. 11(21), pages 1-32, October.
    15. Huaizhi Su & Meng Yang & Zhiping Wen, 2015. "Multi-Layer Multi-Index Comprehensive Evaluation for Dike Safety," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4683-4699, October.
    16. Xianghu Li & Qi Zhang & Chong-Yu Xu & Xuchun Ye, 2015. "The changing patterns of floods in Poyang Lake, China: characteristics and explanations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 651-666, March.
    17. Peng Shi & Miao Wu & Simin Qu & Peng Jiang & Xueyuan Qiao & Xi Chen & Mi Zhou & Zhicai Zhang, 2015. "Spatial Distribution and Temporal Trends in Precipitation Concentration Indices for the Southwest China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 3941-3955, September.
    18. Hong Lv & Xinjian Guan & Yu Meng, 2020. "Comprehensive evaluation of urban flood-bearing risks based on combined compound fuzzy matter-element and entropy weight model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1823-1841, September.
    19. Ajay Singh & Sudhindra Panda, 2013. "Optimization and Simulation Modelling for Managing the Problems of Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3421-3431, July.
    20. C. Sharma & A. Mishra & S. Panda, 2014. "Assessing Impact of Flood on River Dynamics and Susceptible Regions: Geomorphometric Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(9), pages 2615-2638, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:27:y:2013:i:10:p:3631-3645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.