IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v27y2013i10p3541-3553.html
   My bibliography  Save this article

Fuzzy Genetic Approach for Estimating Reference Evapotranspiration of Turkey: Mediterranean Region

Author

Listed:
  • Ozgur Kisi
  • Taner Cengiz

Abstract

The applicability of fuzzy genetic (FG) approach in modeling reference evapotranspiration (ET 0 ) is investigated in this study. Daily solar radiation, air temperature, relative humidity and wind speed data of two stations, Isparta and Antalya, in Mediterranean region of Turkey, are used as inputs to the FG models to estimate ET 0 obtained using the FAO-56 Penman–Monteith equation. The FG estimates are compared with those of the artificial neural networks (ANN). Root mean-squared error, mean absolute error and determination coefficient statistics were used as comparison criteria for the evaluation of the models’ accuracies. It was found that the FG models generally performed better than the ANN models in modeling ET 0 of Mediterranean region of Turkey. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Ozgur Kisi & Taner Cengiz, 2013. "Fuzzy Genetic Approach for Estimating Reference Evapotranspiration of Turkey: Mediterranean Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3541-3553, August.
  • Handle: RePEc:spr:waterr:v:27:y:2013:i:10:p:3541-3553
    DOI: 10.1007/s11269-013-0363-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-013-0363-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-013-0363-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hirad Abghari & Hojjat Ahmadi & Sina Besharat & Vahid Rezaverdinejad, 2012. "Prediction of Daily Pan Evaporation using Wavelet Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3639-3652, September.
    2. Mallikarjuna Perugu & Aruna Singam & Chandra Kamasani, 2013. "Multiple Linear Correlation Analysis of Daily Reference Evapotranspiration," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1489-1500, March.
    3. Sungwon Kim & Jalal Shiri & Ozgur Kisi & Vijay Singh, 2013. "Estimating Daily Pan Evaporation Using Different Data-Driven Methods and Lag-Time Patterns," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2267-2286, May.
    4. Juran Ahmed & Arup Sarma, 2005. "Genetic Algorithm for Optimal Operating Policy of a Multipurpose Reservoir," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(2), pages 145-161, April.
    5. Sungwon Kim & Jalal Shiri & Ozgur Kisi, 2012. "Pan Evaporation Modeling Using Neural Computing Approach for Different Climatic Zones," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3231-3249, September.
    6. Hadi Sanikhani & Ozgur Kisi & Mohammad Nikpour & Yagob Dinpashoh, 2012. "Estimation of Daily Pan Evaporation Using Two Different Adaptive Neuro-Fuzzy Computing Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4347-4365, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seydou Traore & Yufeng Luo & Guy Fipps, 2017. "Gene-Expression Programming for Short-Term Forecasting of Daily Reference Evapotranspiration Using Public Weather Forecast Information," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4891-4908, December.
    2. Ali Rahimikhoob, 2016. "Comparison of M5 Model Tree and Artificial Neural Network’s Methodologies in Modelling Daily Reference Evapotranspiration from NOAA Satellite Images," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3063-3075, July.
    3. Mustafa Turan & Mehmet Yurdusev, 2014. "Predicting Monthly River Flows by Genetic Fuzzy Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4685-4697, October.
    4. M. Majidi & A. Alizadeh & M. Vazifedoust & A. Farid & T. Ahmadi, 2015. "Analysis of the Effect of Missing Weather Data on Estimating Daily Reference Evapotranspiration Under Different Climatic Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2107-2124, May.
    5. Xiaohu Wen & Jianhua Si & Zhibin He & Jun Wu & Hongbo Shao & Haijiao Yu, 2015. "Support-Vector-Machine-Based Models for Modeling Daily Reference Evapotranspiration With Limited Climatic Data in Extreme Arid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3195-3209, July.
    6. Matin Ahooghalandari & Mehdi Khiadani & Mina Esmi Jahromi, 2016. "Developing Equations for Estimating Reference Evapotranspiration in Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3815-3828, September.
    7. Fatih Üneş & Darko Joksimovic & Ozgur Kisi, 2015. "Plunging Flow Depth Estimation in a Stratified Dam Reservoir Using Neuro-Fuzzy Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3055-3077, July.
    8. Mohammad Valipour, 2014. "Use of average data of 181 synoptic stations for estimation of reference crop evapotranspiration by temperature-based methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4237-4255, September.
    9. Yufeng Luo & Seydou Traore & Xinwei Lyu & Weiguang Wang & Ying Wang & Yongyu Xie & Xiyun Jiao & Guy Fipps, 2015. "Medium Range Daily Reference Evapotranspiration Forecasting by Using ANN and Public Weather Forecasts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3863-3876, August.
    10. M. Majidi & A. Alizadeh & A. Farid & M. Vazifedoust, 2015. "Estimating Evaporation from Lakes and Reservoirs under Limited Data Condition in a Semi-Arid Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3711-3733, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ozgur Kisi & Levent Latifoğlu & Fatma Latifoğlu, 2014. "Investigation of Empirical Mode Decomposition in Forecasting of Hydrological Time Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4045-4057, September.
    2. Youngmin Seo & Sungwon Kim & Vijay Singh, 2015. "Estimating Spatial Precipitation Using Regression Kriging and Artificial Neural Network Residual Kriging (RKNNRK) Hybrid Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2189-2204, May.
    3. Miao Zhang & Bo Su & Majid Nazeer & Muhammad Bilal & Pengcheng Qi & Ge Han, 2020. "Climatic Characteristics and Modeling Evaluation of Pan Evapotranspiration over Henan Province, China," Land, MDPI, vol. 9(7), pages 1-14, July.
    4. Yanhu He & Kairong Lin & Xiaohong Chen & Changqing Ye & Lei Cheng, 2015. "Classification-Based Spatiotemporal Variations of Pan Evaporation Across the Guangdong Province, South China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 901-912, February.
    5. M. Majidi & A. Alizadeh & M. Vazifedoust & A. Farid & T. Ahmadi, 2015. "Analysis of the Effect of Missing Weather Data on Estimating Daily Reference Evapotranspiration Under Different Climatic Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2107-2124, May.
    6. Yeşim Ahi & Çiğdem Coşkun Dilcan & Daniyal Durmuş Köksal & Hüseyin Tevfik Gültaş, 2023. "Reservoir Evaporation Forecasting Based on Climate Change Scenarios Using Artificial Neural Network Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2607-2624, May.
    7. T. Fowe & I. Nouiri & B. Ibrahim & H. Karambiri & J. Paturel, 2015. "OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3841-3861, August.
    8. Xianming Dou & Yongguo Yang & Jinhui Luo, 2018. "Estimating Forest Carbon Fluxes Using Machine Learning Techniques Based on Eddy Covariance Measurements," Sustainability, MDPI, vol. 10(1), pages 1-26, January.
    9. Rongqi Zhang & Shanghong Zhang & Xiaoxiong Wen & Zhu Jing, 2023. "Refined Scheduling Based on Dynamic Capacity Model for Short-term Hydropower Generation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 21-35, January.
    10. Fang-Fang Li & Jia-Hua Wei & Xu-Dong Fu & Xin-Yu Wan, 2012. "An Effective Approach to Long-Term Optimal Operation of Large-Scale Reservoir Systems: Case Study of the Three Gorges System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4073-4090, November.
    11. K. Ramakrishnan & C. Suribabu & T. Neelakantan, 2010. "Crop Calendar Adjustment Study for Sathanur Irrigation System in India Using Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 3835-3851, November.
    12. Lisicki, Michal & Lubitz, William & Taylor, Graham W., 2016. "Optimal design and operation of Archimedes screw turbines using Bayesian optimization," Applied Energy, Elsevier, vol. 183(C), pages 1404-1417.
    13. Onur Hınçal & A. Altan-Sakarya & A. Metin Ger, 2011. "Optimization of Multireservoir Systems by Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1465-1487, March.
    14. V. Jothiprakash & R. Arunkumar, 2013. "Optimization of Hydropower Reservoir Using Evolutionary Algorithms Coupled with Chaos," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 1963-1979, May.
    15. Saad Dahmani & Djilali Yebdri, 2020. "Hybrid Algorithm of Particle Swarm Optimization and Grey Wolf Optimizer for Reservoir Operation Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4545-4560, December.
    16. Zaher Mundher Yaseen & Majeed Mattar Ramal & Lamine Diop & Othman Jaafar & Vahdettin Demir & Ozgur Kisi, 2018. "Hybrid Adaptive Neuro-Fuzzy Models for Water Quality Index Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2227-2245, May.
    17. V. Jothiprakash & Ganesan Shanthi, 2006. "Single Reservoir Operating Policies Using Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(6), pages 917-929, December.
    18. Sajjad Abdollahi & Jalil Raeisi & Mohammadreza Khalilianpour & Farshad Ahmadi & Ozgur Kisi, 2017. "Daily Mean Streamflow Prediction in Perennial and Non-Perennial Rivers Using Four Data Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4855-4874, December.
    19. Youngmin Seo & Sungwon Kim & Ozgur Kisi & Vijay P. Singh & Kamban Parasuraman, 2016. "River Stage Forecasting Using Wavelet Packet Decomposition and Machine Learning Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 4011-4035, September.
    20. Amir Hatamkhani & Ali Moridi, 2019. "Multi-Objective Optimization of Hydropower and Agricultural Development at River Basin Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4431-4450, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:27:y:2013:i:10:p:3541-3553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.