IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v26y2012i13p3819-3829.html
   My bibliography  Save this article

Capacity Building as A Policy Instrument in Water Conservation: A Case Study on Commercial, Industrial, and Institutional Consumers

Author

Listed:
  • Lewis Reed

Abstract

Efforts by municipal water agencies to improve demand end water use efficiency have focused largely on incentive programs and regulatory interventions. However, another important approach to achieving conservation targets is capacity-building, which may be particularly effective when target populations are motivated to improve their consumption efficiency but are lacking information or technology to do so. This case study considers a program by the Santa Clara Valley Water District (CA, USA) which aims to enable conservation among a group of consumers by providing information about current use and potential savings as well as optional access to water saving devices. The impact of this capacity building approach on consumption patterns was quantified by comparing water histories of program participants to a control group of similar sites within the District. Participating sites showed a net savings of 18.22 % when compared to the control group. The study demonstrates that capacity building approaches can effectively compliment other interventions such as conservation incentives to improve demand end water use efficiency. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Lewis Reed, 2012. "Capacity Building as A Policy Instrument in Water Conservation: A Case Study on Commercial, Industrial, and Institutional Consumers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3819-3829, October.
  • Handle: RePEc:spr:waterr:v:26:y:2012:i:13:p:3819-3829
    DOI: 10.1007/s11269-012-0105-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-012-0105-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-012-0105-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sheila M. Olmstead, 2010. "The Economics of Managing Scarce Water Resources," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 4(2), pages 179-198, Summer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengshan Lee & Berrin Tansel & Maribel Balbin, 2013. "Urban Sustainability Incentives for Residential Water Conservation: Adoption of Multiple High Efficiency Appliances," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2531-2540, May.
    2. Stella Santana & Gilberto Barroso, 2014. "Integrated Ecosystem Management of River Basins and the Coastal Zone in Brazil," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 4927-4942, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tapsuwan, Sorada & Polyakov, Maksym & Bark, Rosalind & Nolan, Martin, 2015. "Valuing the Barmah–Millewa Forest and in stream river flows: A spatial heteroskedasticity and autocorrelation consistent (SHAC) approach," Ecological Economics, Elsevier, vol. 110(C), pages 98-105.
    2. Christopher Müller, 2015. "Welfare Effects of Water Pricing in Germany," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 1(04), pages 1-25, December.
    3. Halkos, George & Managi, Shunsuke, 2023. "New developments in the disciplines of environmental and resource economics," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 513-522.
    4. Abbott, Joshua K. & Klaiber, H. Allen, 2011. "The Value Of Water As An Urban Club Good: A Matching Approach To Hoa-Provided Lakes," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103781, Agricultural and Applied Economics Association.
    5. Zack Dorner & Daniel A. Brent & Anke Leroux, 2019. "Preferences for Intrinsically Risky Attributes," Land Economics, University of Wisconsin Press, vol. 95(4), pages 494-514.
    6. Garrone, Paola & Grilli, Luca & Marzano, Riccardo, 2019. "Price elasticity of water demand considering scarcity and attitudes," Utilities Policy, Elsevier, vol. 59(C), pages 1-1.
    7. Negin Ashoori & David A. Dzombak & Mitchell J. Small, 2016. "Modeling the Effects of Conservation, Demographics, Price, and Climate on Urban Water Demand in Los Angeles, California," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5247-5262, November.
    8. Debaere, Peter & Li, Tianshu, 2017. "The Effects of Water Markets: Evidence from the Rio Grande," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259187, Agricultural and Applied Economics Association.
    9. Dorner, Zach & Brent, Daniel A. & Leroux, Anke, 2016. "Eliciting Risk Preferences for Intrinsic Attributes," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236644, Agricultural and Applied Economics Association.
    10. Hao Wang & Sander Meijerink & Erwin van der Krabben, 2020. "Institutional Design and Performance of Markets for Watershed Ecosystem Services: A Systematic Literature Review," Sustainability, MDPI, vol. 12(16), pages 1-26, August.
    11. repec:ags:aaea22:335920 is not listed on IDEAS
    12. R. Quentin Grafton & Tom Kompas & Hang To & Michael Ward, 2009. "Residential Water Consumption: A Cross Country Analysis," Environmental Economics Research Hub Research Reports 0923, Environmental Economics Research Hub, Crawford School of Public Policy, The Australian National University, revised Aug 2009.
    13. Wilson, Kyle D., 2023. "Simulating a Water Market: An In-Class Activity to Compare Market Efficiency under Various Institutions and Relative Advantages of Agents," Applied Economics Teaching Resources (AETR), Agricultural and Applied Economics Association, vol. 5(3), September.
    14. Erik Ansink & Hans-Peter Weikard, 2015. "Composition properties in the river claims problem," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 44(4), pages 807-831, April.
    15. Wichman, Casey, 2024. "Efficiency, Equity, and Cost-Recovery Trade-Offs in Municipal Water Pricing," RFF Working Paper Series 24-18, Resources for the Future.
    16. Nathan DeMaagd & Michael J. Roberts, 2020. "Estimating Water Demand Using Price Differences of Wastewater Services," Working Papers 202019, University of Hawaii at Manoa, Department of Economics.
    17. Ansink, Erik & Houba, Harold, 2012. "Market power in water markets," Journal of Environmental Economics and Management, Elsevier, vol. 64(2), pages 237-252.
    18. Olmstead, Sheila M., 2014. "Climate change adaptation and water resource management: A review of the literature," Energy Economics, Elsevier, vol. 46(C), pages 500-509.
    19. Truong, Chi H. & Drynan, Ross G., 2013. "Capacity sharing enhances efficiency in water markets involving storage," Agricultural Water Management, Elsevier, vol. 122(C), pages 46-52.
    20. Dupont, Diane P., 2011. "Reclaimed Wastewater and the WTP to avoid Summer Water Restrictions: Incorporation Endogenous Free-riding Beliefs," 85th Annual Conference, April 18-20, 2011, Warwick University, Coventry, UK 108778, Agricultural Economics Society.
    21. Daniel A. Brent & Joseph H. Cook & Skylar Olsen, 2015. "Social Comparisons, Household Water Use, and Participation in Utility Conservation Programs: Evidence from Three Randomized Trials," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(4), pages 597-627.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:26:y:2012:i:13:p:3819-3829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.