IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v25y2011i9p2147-2175.html
   My bibliography  Save this article

Characterizing the Socio-Economic Driving Forces of Groundwater Abstraction with Artificial Neural Networks and Multivariate Techniques

Author

Listed:
  • Said Jalala
  • Azzedine Hani
  • Isam Shahrour

Abstract

Integrated groundwater quantity management in the Middle East region must consider appropriate control measures of the socio economic needs. Hence, there is a need for a better knowledge and understanding of the socio economic variables influencing the groundwater quantity. Gaza Strip was chosen as the study area and real data were collected from twenty five municipalities for the reference year 2001. In this paper, the effective variables have been characterized and prioritized using multi-criteria analysis with artificial neural networks (ANN) and expert opinion and judgment. The selected variables were classified and organized using the multivariate techniques of cluster analysis, factor analysis, principal components and classification analysis. There are significant discrepancies between the results of ANN analysis and expert opinion and judgment in terms of ranking and prioritizing the socio-economic variables. Characterization of the priority effective socio-economic driving forces indicates that water managers and planners can introduce demand-based groundwater management in place of the existing supply-based groundwater management. This ensures the success of undertaking responsive technical, managerial and regulatory measures. Income per capita has the highest priority. Efficiency of revenue collection is not a significant socio-economic factor. The models strengthen the integration of preventive approach into groundwater quantity management. In addition to that, they assist decision makers to better assess the socio economic needs and undertake proactive measures to protect the coastal aquifer. Copyright Springer Science+Business Media B.V. 2011

Suggested Citation

  • Said Jalala & Azzedine Hani & Isam Shahrour, 2011. "Characterizing the Socio-Economic Driving Forces of Groundwater Abstraction with Artificial Neural Networks and Multivariate Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(9), pages 2147-2175, July.
  • Handle: RePEc:spr:waterr:v:25:y:2011:i:9:p:2147-2175
    DOI: 10.1007/s11269-011-9800-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-011-9800-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-011-9800-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Misgana Muleta & John Nicklow, 2004. "Joint Application of Artificial Neural Networks and Evolutionary Algorithms to Watershed Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(5), pages 459-482, October.
    2. van der Vlist, M. J., 1999. "Blue node concept: a regional water management strategy," Agricultural Water Management, Elsevier, vol. 40(2-3), pages 265-273, May.
    3. Chuang-lin Fang & Chao Bao & Jin-chuan Huang, 2007. "Management Implications to Water Resources Constraint Force on Socio-economic System in Rapid Urbanization: A Case Study of the Hexi Corridor, NW China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(9), pages 1613-1633, September.
    4. Bouwer, Herman, 2000. "Integrated water management: emerging issues and challenges," Agricultural Water Management, Elsevier, vol. 45(3), pages 217-228, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kolin Loveless & Aamir Farooq & Noreddine Ghaffour, 2013. "Collection of Condensate Water: Global Potential and Water Quality Impacts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1351-1361, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maisa’a W. Shammout, 2023. "Calculation and Management of Water Supply and Demand under Land Use/Cover Changes in the Yarmouk River Basin Governorates in Jordan," Land, MDPI, vol. 12(8), pages 1-13, July.
    2. Antony, Edna & Singandhupe, R. B., 2004. "Impact of drip and surface irrigation on growth, yield and WUE of capsicum (Capsicum annum L.)," Agricultural Water Management, Elsevier, vol. 65(2), pages 121-132, March.
    3. Lou, Bo & Ulgiati, Sergio, 2013. "Identifying the environmental support and constraints to the Chinese economic growth—An application of the Emergy Accounting method," Energy Policy, Elsevier, vol. 55(C), pages 217-233.
    4. Morten Graversgaard & Beatrice Hedelin & Laurence Smith & Flemming Gertz & Anker Lajer Højberg & John Langford & Grit Martinez & Erik Mostert & Emilia Ptak & Heidi Peterson & Nico Stelljes & Cors Van , 2018. "Opportunities and Barriers for Water Co-Governance—A Critical Analysis of Seven Cases of Diffuse Water Pollution from Agriculture in Europe, Australia and North America," Sustainability, MDPI, vol. 10(5), pages 1-39, May.
    5. Wichelns, Dennis & Oster, J.D., 2006. "Sustainable irrigation is necessary and achievable, but direct costs and environmental impacts can be substantial," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 114-127, November.
    6. Karen Goff & Randall Gentry, 2006. "The Influence of Watershed and Development Characteristics on the Cumulative Impacts of Stormwater Detention Ponds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(6), pages 829-860, December.
    7. Sacchidananda Mukherjee & Prakash Nelliyat, 2006. "Ground Water Pollution and Emerging Environmental Challenges of Industrial Effluent Irrigation: A Case Study of Mettupalayam Taluk, Tamilnadu," Working Papers 2006-07, Madras School of Economics,Chennai,India.
    8. Sauer, Timm & Havlik, Petr & Schneider, Uwe A. & Kindermann, Georg E. & Obersteiner, Michael, 2008. "Agriculture, Population, Land and Water Scarcity in a Changing World – The Role of Irrigation," 2008 International Congress, August 26-29, 2008, Ghent, Belgium 44271, European Association of Agricultural Economists.
    9. Bastiaanssen, W. G. M. & Chandrapala, L., 2003. "Water balance variability across Sri Lanka for assessing agricultural and environmental water use," Agricultural Water Management, Elsevier, vol. 58(2), pages 171-192, February.
    10. Marta Antonelli & Martina Sartori, 2014. "Unfolding the Potential of the Virtual Water Concept. What is still under debate?," IEFE Working Papers 74, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    11. Banejad, H. & Souri, H., 2003. "Sewage dilution as a management alternative in agricultural reuse of wastewater," IWMI Books, Reports H033352, International Water Management Institute.
    12. Alam, Mohammad Faiz & Pavelic, Paul, 2020. "Underground Transfer of Floods for Irrigation (UTFI): exploring potential at the global scale," IWMI Research Reports H050008, International Water Management Institute.
    13. Wu, Feng & Zhan, Jinyan & Güneralp, İnci, 2015. "Present and future of urban water balance in the rapidly urbanizing Heihe River Basin, Northwest China," Ecological Modelling, Elsevier, vol. 318(C), pages 254-264.
    14. Chao Bao & Dongmei He, 2019. "Scenario Modeling of Urbanization Development and Water Scarcity Based on System Dynamics: A Case Study of Beijing–Tianjin–Hebei Urban Agglomeration, China," IJERPH, MDPI, vol. 16(20), pages 1-19, October.
    15. Dimaranan, Betina & Duc, Le Thuc & Martin, Will, 2005. "Potential Economic Impacts of Merchandise Trade Liberalization under Viet Nam’s Accession to the WTO," Conference papers 331403, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    16. Dagnachew Adugna & Marina Bergen Jensen & Brook Lemma & Geremew Sahilu Gebrie, 2018. "Assessing the Potential for Rooftop Rainwater Harvesting from Large Public Institutions," IJERPH, MDPI, vol. 15(2), pages 1-11, February.
    17. Nestor Shpak & Oleh Kuzmin & Olga Melnyk & Mariana Ruda & Włodzimierz Sroka, 2020. "Implementation of a Circular Economy in Ukraine: The Context of European Integration," Resources, MDPI, vol. 9(8), pages 1-15, August.
    18. Raats, Peter A.C. & Feddes, Reinder A., 2006. "Contributions by Jans Wesseling, Jan van Schilfgaarde, and Herman Bouwer to effective and responsible water management in agriculture," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 9-29, November.
    19. Hailiang Ma & Nan-Ting Chou & Lei Wang, 2016. "Dynamic Coupling Analysis of Urbanization and Water Resource Utilization Systems in China," Sustainability, MDPI, vol. 8(11), pages 1-18, November.
    20. Tzanakakis, V.A. & Angelakis, A.N., 2011. "Chemical exergy as a unified and objective indicator in the assessment and optimization of land treatment systems," Ecological Modelling, Elsevier, vol. 222(17), pages 3082-3091.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:25:y:2011:i:9:p:2147-2175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.