IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v23y2009i1p169-185.html
   My bibliography  Save this article

An Optimization Strategy for Water Distribution Networks

Author

Listed:
  • Önder Ekinci
  • Haluk Konak

Abstract

An optimization strategy based on head losses minimization is developed for the least cost design of water distribution networks. A new weighting approach is suggested for calculating the initial flow distribution and optimum pipe diameters of the weighted flow distribution is presented by using least square method. In the mean time homogenous and isotropous head losses are maintained with implications of head loss path choice. The model is employed for designing and/or modifying pipe sizes while the classical Hardy-Cross network solver is used to balance the flows. The whole algorithm is programmed and applied to a two-looped network selected from the literature and the results are presented on a comparative basis. A FORTRAN software with the necessary steps in the flow chart is written for the optimization calculations in this paper. Copyright Springer Science+Business Media B.V. 2009

Suggested Citation

  • Önder Ekinci & Haluk Konak, 2009. "An Optimization Strategy for Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(1), pages 169-185, January.
  • Handle: RePEc:spr:waterr:v:23:y:2009:i:1:p:169-185
    DOI: 10.1007/s11269-008-9270-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-008-9270-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-008-9270-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dejan Brkić, 2011. "Iterative Methods for Looped Network Pipeline Calculation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(12), pages 2951-2987, September.
    2. Ioan Sarbu, 2014. "Nodal Analysis of Urban Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3143-3159, August.
    3. Calvin Siew & Tiku Tanyimboh, 2012. "Penalty-Free Feasibility Boundary Convergent Multi-Objective Evolutionary Algorithm for the Optimization of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4485-4507, December.
    4. Milan Cisty, 2010. "Hybrid Genetic Algorithm and Linear Programming Method for Least-Cost Design of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 1-24, January.
    5. M. Pasha & Kevin Lansey, 2014. "Strategies to Develop Warm Solutions for Real-Time Pump Scheduling for Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 3975-3987, September.
    6. Roland Barthel & Stephan Janisch & Darla Nickel & Aleksandar Trifkovic & Thomas Hörhan, 2010. "Using the Multiactor-Approach in G lowa-Danube to Simulate Decisions for the Water Supply Sector Under Conditions of Global Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(2), pages 239-275, January.
    7. Symeon Christodoulou & Alexandra Deligianni, 2010. "A Neurofuzzy Decision Framework for the Management of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 139-156, January.
    8. Singh, Vijay P. & Oh, Juik, 2015. "A Tsallis entropy-based redundancy measure for water distribution networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 360-376.
    9. Mohammad Rahimi & Ali Haghighi, 2015. "A Graph Portioning Approach for Hydraulic Analysis-Design of Looped Pipe Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5339-5352, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:23:y:2009:i:1:p:169-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.