IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v21y2007i5p861-871.html
   My bibliography  Save this article

Analysing the Diversity of Water Pricing Structures: The Case of France

Author

Listed:
  • Marielle Montginoul

Abstract

This paper presents the results of a 2003 national survey of urban water pricing structure implemented by 429 district level water utilities. After providing some background elements on the diversity of existing water pricing structures, the paper shows how each structure can be used to achieve different management objectives (water allocation efficiency, costs recovery, and equity). It then describes the structures adopted by French water utilities, showing that flat rate are rarely adopted; declining blocks frequently used; and increasing blocks pricing which should be used to promote water use efficiency remain extremely rare. A statistical clustering is then conducted and a typology of situations elaborated. The paper concludes with highlighting that current pricing structures are influenced by past practices and that the dominant objective of water utilities is to cover costs. Copyright Springer Science+Business Media, Inc. 2007

Suggested Citation

  • Marielle Montginoul, 2007. "Analysing the Diversity of Water Pricing Structures: The Case of France," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(5), pages 861-871, May.
  • Handle: RePEc:spr:waterr:v:21:y:2007:i:5:p:861-871
    DOI: 10.1007/s11269-006-9104-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-006-9104-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-006-9104-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Henry S. Foster, Jr. & Bruce R. Beattie, 1979. "Urban Residential Demand for Water in the United States," Land Economics, University of Wisconsin Press, vol. 55(1), pages 43-58.
    2. Arbues, Fernando & Garcia-Valinas, Maria Angeles & Martinez-Espineira, Roberto, 2003. "Estimation of residential water demand: a state-of-the-art review," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 32(1), pages 81-102, March.
    3. R. G. Taylor & John R. McKean & Robert A. Young, 2004. "Alternate Price Specifications for Estimating Residential Water Demand with Fixed Fees," Land Economics, University of Wisconsin Press, vol. 80(3), pages 463-475.
    4. Michael L. Nieswiadomy & David J. Molina, 1991. "A Note on Price Perception in Water Demand Models," Land Economics, University of Wisconsin Press, vol. 67(3), pages 352-359.
    5. Martin S. Feldstein, 1972. "Equity and Efficiency in Public Sector Pricing: The Optimal Two-Part Tariff," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 86(2), pages 175-187.
    6. Dinar, Ariel & Rosegrant, Mark W. & Meinzen-Dick, Ruth, 1997. "Water allocation mechanisms : principles and examples," Policy Research Working Paper Series 1779, The World Bank.
    7. Manuel Gottlieb, 1963. "Urban Domestic Demand for Water: A Kansas Case Study," Land Economics, University of Wisconsin Press, vol. 39(2), pages 204-210.
    8. Shin, Jeong-Shik, 1985. "Perception of Price When Price Information Is Costly: Evidence from Residential Electricity Demand," The Review of Economics and Statistics, MIT Press, vol. 67(4), pages 591-598, November.
    9. Whittington, Dale, 1992. "Possible Adverse Effects of Increasing Block Water Tariffs in Developing Countries," Economic Development and Cultural Change, University of Chicago Press, vol. 41(1), pages 75-87, October.
    10. John A. Nordin, 1976. "A Proposed Modification of Taylor's Demand Analysis: Comment," Bell Journal of Economics, The RAND Corporation, vol. 7(2), pages 719-721, Autumn.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher Boyer & Damian Adams & Tatiana Borisova & Christopher Clark, 2012. "Factors Driving Water Utility Rate Structure Choice: Evidence from Four Southern U.S. States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(10), pages 2747-2760, August.
    2. Lijin Zhong & Arthur Mol, 2010. "Water Price Reforms in China: Policy-Making and Implementation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(2), pages 377-396, January.
    3. Fernando Arbués & Maria García-Valiñas & Inmaculada Villanúa, 2010. "Urban Water Demand for Service and Industrial Use: The Case of Zaragoza," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 4033-4048, November.
    4. M. Allaire & A. Dinar, 2022. "What Drives Water Utility Selection of Pricing Methods? Evidence from California," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 153-169, January.
    5. Xunzhou Ma & Shiqiu Zhang & Quan Mu, 2014. "How Do Residents Respond to Price under Increasing Block Tariffs? Evidence from Experiments in Urban Residential Water Demand in Beijing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 4895-4909, November.
    6. Jean-Daniel Rinaudo & Noémie Neverre & Marielle Montginoul, 2012. "Simulating the Impact of Pricing Policies on Residential Water Demand: A Southern France Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 2057-2068, May.
    7. Ruiz-Rosa, Inés & García-Rodríguez, Francisco J. & Antonova, Natalia, 2020. "Developing a methodology to recover the cost of wastewater reuse: A proposal based on the polluter pays principle," Utilities Policy, Elsevier, vol. 65(C).
    8. Ramón Barberán & Fernando Arbués, 2009. "Equity in Domestic Water Rates Design," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(10), pages 2101-2118, August.
    9. Francisco Silva Pinto & Rui Cunha Marques, 2016. "Tariff Suitability Framework for Water Supply Services," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(6), pages 2037-2053, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Acuña, Guillermo, 2017. "Elasticidades de la demanda de agua en Chile [Elasticities of water demand in Chile]," MPRA Paper 82916, University Library of Munich, Germany.
    2. Marie-Estelle Binet & Fabrizio Carlevaro & Michel Paul, 2014. "Estimation of Residential Water Demand with Imperfect Price Perception," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(4), pages 561-581, December.
    3. Henrique Monteiro, 2010. "Residential Water Demand in Portugal: checking for efficiency-based justifications for increasing block tariffs," Working Papers Series 1 ercwp0110, ISCTE-IUL, Business Research Unit (BRU-IUL).
    4. Guillermo Ignacio Acuña & Cristián Echeverría & Alex Godoy & Felipe Vásquez, 2020. "The role of climate variability in convergence of residential water consumption across Chilean localities," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(1), pages 89-108, January.
    5. Havranek, Tomas & Irsova, Zuzana & Vlach, Tomas, 2016. "Publication Bias in Measuring the Income Elasticity of Water Demand," MPRA Paper 75247, University Library of Munich, Germany.
    6. Tomas Havranek & Zuzana Irsova & Tomas Vlach, 2018. "Measuring the Income Elasticity of Water Demand: The Importance of Publication and Endogeneity Biases," Land Economics, University of Wisconsin Press, vol. 94(2), pages 259-283.
    7. Ming-Feng Hung & Bin-Tzong Chie, 2013. "Residential Water Use: Efficiency, Affordability, and Price Elasticity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 275-291, January.
    8. Ming-Feng Hung & Bin-Tzong Chie & Tai-Hsin Huang, 2017. "Residential water demand and water waste in Taiwan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 19(2), pages 249-268, April.
    9. Arbues, Fernando & Garcia-Valinas, Maria Angeles & Martinez-Espineira, Roberto, 2003. "Estimation of residential water demand: a state-of-the-art review," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 32(1), pages 81-102, March.
    10. Janine Stone & Christopher Goemans & Marco Costanigro, 2019. "Variation in Water Demand Responsiveness to Utility Policies and Weather: A Latent-Class Model," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-33, September.
    11. Andrew C. Worthington & Mark Hoffman, 2008. "An Empirical Survey Of Residential Water Demand Modelling," Journal of Economic Surveys, Wiley Blackwell, vol. 22(5), pages 842-871, December.
    12. Mónica Maldonado-Devis & Vicent Almenar-Llongo, 2021. "A Panel Data Estimation of Domestic Water Demand with IRT Tariff Structure: The Case of the City of Valencia (Spain)," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    13. Céline Nauges & Dale Whittington, 2010. "Estimation of Water Demand in Developing Countries: An Overview," The World Bank Research Observer, World Bank, vol. 25(2), pages 263-294, August.
    14. S. Gaudin, 2006. "Effect of price information on residential water demand," Applied Economics, Taylor & Francis Journals, vol. 38(4), pages 383-393.
    15. Fuente, David & Kabubo-Mariara, Jane & Kimuyu, Peter & Mwaura, Mbutu & Whittington, Dale, 2017. "Assessing the Performance of Alternative Water and Sanitation Tariffs: The Case of Nairobi, Kenya," EfD Discussion Paper 17-21, Environment for Development, University of Gothenburg.
    16. Nataraj, Shanthi & Hanemann, W. Michael, 2011. "Does marginal price matter? A regression discontinuity approach to estimating water demand," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 198-212, March.
    17. Michael O'Donnell & Robert P. Berrens, 2018. "Understanding Falling Municipal Water Demand in a Small City Dependent on the Declining Ogallala Aquifer: Case Study of Clovis, New Mexico," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 1-40, October.
    18. René Cabral & Luciano Ayala & Victor Hugo Delgado, 2017. "Residential Water Demand and Price Perception under Increasing Block Rates," Economics Bulletin, AccessEcon, vol. 37(1), pages 508-519.
    19. Miguel Bacharach & William J. Vaughan, 1994. "Household Water Demand Estimation," IDB Publications (Working Papers) 25218, Inter-American Development Bank.
    20. Boogen, Nina & Datta, Souvik & Filippini, Massimo, 2021. "Estimating residential electricity demand: New empirical evidence," Energy Policy, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:21:y:2007:i:5:p:861-871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.