IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v21y2007i11p1829-1848.html
   My bibliography  Save this article

Another Look at Z-transform Technique for Deriving Unit Impulse Response Function

Author

Listed:
  • R. Rai
  • M. Jain
  • S. Mishra
  • C. Ojha
  • V. Singh

Abstract

This paper presents a technique to derive the unit impulse response functions (UIRF) used for determination of unit hydrograph by employing the Z-transform technique to the response function derived from the Auto Regressive Moving Average (ARMA) process of order (p, q). The proposed approach was applied to reproduce direct surface runoff for single storm event data registered over four watersheds of area ranging from 0.42 to 295 km 2 . It is observed that the UIRF based on ARMA (1, 2) and ARMA (2, 2) provides a better representation of the watershed response. Further, to test the superiority of the developed impulse response function form ARMA process, the direct runoff hydrographs were computed using the simple ARMA process and optimized Nash’s two parameter model and compared with the results obtained from UIRF’s of ARMA model. The performance of the models based on the graphical presentation as well as from the test statistics viz. RMSE and MAPE indicates that UIRF-ARMA (p, q) performs better than optimized Nash Model and mostly similar to simple ARMA (p,q) model. Further more, the ARMA process of order p ≤ 2 and q ≤ 2 is generally sufficient and less cumbersome than the Argand diagram based approach for UIRF derivation. Copyright Springer Science+Business Media, Inc. 2007

Suggested Citation

  • R. Rai & M. Jain & S. Mishra & C. Ojha & V. Singh, 2007. "Another Look at Z-transform Technique for Deriving Unit Impulse Response Function," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(11), pages 1829-1848, November.
  • Handle: RePEc:spr:waterr:v:21:y:2007:i:11:p:1829-1848
    DOI: 10.1007/s11269-006-9132-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-006-9132-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-006-9132-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dooge, James C. I., 1973. "Linear Theory of Hydrologic Systems," Technical Bulletins 160041, United States Department of Agriculture, Economic Research Service.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. R. Rai & S. Sarkar & V. Singh, 2009. "Evaluation of the Adequacy of Statistical Distribution Functions for Deriving Unit Hydrograph," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 899-929, March.
    2. R. Rai & S. Sarkar & Alka Upadhyay & V. Singh, 2010. "Efficacy of Nakagami-m Distribution Function for Deriving Unit Hydrograph," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(3), pages 563-575, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Rai & S. Sarkar & Alka Upadhyay & V. Singh, 2010. "Efficacy of Nakagami-m Distribution Function for Deriving Unit Hydrograph," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(3), pages 563-575, February.
    2. R. Rai & S. Sarkar & V. Singh, 2009. "Evaluation of the Adequacy of Statistical Distribution Functions for Deriving Unit Hydrograph," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 899-929, March.
    3. Bhabagrahi Sahoo, 2013. "Field Application of the Multilinear Muskingum Discharge Routing Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1193-1205, March.
    4. Jia Liu & Jianhua Wang & Shibing Pan & Kewang Tang & Chuanzhe Li & Dawei Han, 2015. "A real-time flood forecasting system with dual updating of the NWP rainfall and the river flow," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1161-1182, June.
    5. Avinash Agarwal & R. Singh, 2004. "Runoff Modelling Through Back Propagation Artificial Neural Network With Variable Rainfall-Runoff Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(3), pages 285-300, June.
    6. Zaw Latt, 2015. "Application of Feedforward Artificial Neural Network in Muskingum Flood Routing: a Black-Box Forecasting Approach for a Natural River System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 4995-5014, November.
    7. A. Sohail & K. Watanabe & S. Takeuchi, 2008. "Runoff Analysis for a Small Watershed of Tono Area Japan by Back Propagation Artificial Neural Network with Seasonal Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(1), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:21:y:2007:i:11:p:1829-1848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.