IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v20y2006i5p761-778.html
   My bibliography  Save this article

Optimal Water Allocation for an Alpine Hydropower System Under Changing Scenarios

Author

Listed:
  • Lorenzo Alfieri
  • Paolo Perona
  • Paolo Burlando

Abstract

The operating rules of water allocation in the alpine OFIMA hydropower network of the Maggia River basin (Canton Tessin, Switzerland) are investigated in response to changes in the production policy and environmental and climatic factors. The study was carried out by means of a nonlinear programming approach where the objective function is approximated to a quadratic form with linear constraints, and implemented on a monthly time scale. Two systemís configurations with different details were accordingly investigated and compared to assess the response of the hydropower network to changes in the production policy, in the magnitude of the inflows and to different environmental requests. The optimal solution of water allocation corresponding to the new hypothetical production policy shows marked differences but similar benefits when compared to the one of the present operating rules, thus suggesting the good flexibility of the real network under such change. In its whole, this paper therefore highlights the importance of supporting strategic decisions by means of informatics tools and, in addiction, it provides a useful case study to test the performances of the software AQUARIUS implementing such a nonlinear programming technique. Copyright Springer Science+Business Media, Inc. 2006

Suggested Citation

  • Lorenzo Alfieri & Paolo Perona & Paolo Burlando, 2006. "Optimal Water Allocation for an Alpine Hydropower System Under Changing Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(5), pages 761-778, October.
  • Handle: RePEc:spr:waterr:v:20:y:2006:i:5:p:761-778
    DOI: 10.1007/s11269-005-9006-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-005-9006-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-005-9006-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pérez-Díaz, Juan I. & Wilhelmi, José R., 2010. "Assessment of the economic impact of environmental constraints on short-term hydropower plant operation," Energy Policy, Elsevier, vol. 38(12), pages 7960-7970, December.
    2. Pengfei Lin & Jinjun You & Hong Gan & Ling Jia, 2020. "Rule-Based Object-Oriented Water Resource System Simulation Model for Water Allocation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3183-3197, August.
    3. Geth, F. & Brijs, T. & Kathan, J. & Driesen, J. & Belmans, R., 2015. "An overview of large-scale stationary electricity storage plants in Europe: Current status and new developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1212-1227.
    4. Maryam Ghashghaie & Safar Marofi & Hossein Marofi, 2014. "Using System Dynamics Method to Determine the Effect of Water Demand Priorities on Downstream Flow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 5055-5072, November.
    5. Pascal Hänggi & Rolf Weingartner, 2012. "Variations in Discharge Volumes for Hydropower Generation in Switzerland," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(5), pages 1231-1252, March.
    6. Ioannis Niadas & Panos Mentzelopoulos, 2008. "Probabilistic Flow Duration Curves for Small Hydro Plant Design and Performance Evaluation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(4), pages 509-523, April.
    7. Guisández, Ignacio & Pérez-Díaz, Juan I. & Wilhelmi, José R., 2013. "Assessment of the economic impact of environmental constraints on annual hydropower plant operation," Energy Policy, Elsevier, vol. 61(C), pages 1332-1343.
    8. Sample, James E. & Duncan, Niall & Ferguson, Michael & Cooksley, Susan, 2015. "Scotland׳s hydropower: Current capacity, future potential and the possible impacts of climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 111-122.
    9. Maritza Arganis-Juárez & Rosalva Mendoza-Ramírez & Ramón Domínguez-Mora & Alma Hernández-Ruiz & Moisés Berezowsky-Verduzco, 2013. "Influence of Guiding Curves in the Optimal Management of a Hydropower System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 4989-5001, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:20:y:2006:i:5:p:761-778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.