IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v19y2005i5p571-584.html
   My bibliography  Save this article

Modeling Water Resources Allocation in a Run-of-the-River Rice Irrigation Scheme

Author

Listed:
  • T. Lee
  • M. Haque
  • M. Najim

Abstract

Seventy-five percent of the available water resources in Malaysia are used for rice irrigation. Proper water management must be given due emphasis to effectively manage the water resources. This study analyzed field level practices, which could save irrigation water and thus increase area to be irrigated. The analyses were conducted for both the pre-saturation and normal supply periods using field data collected at the Besut irrigation scheme, Malaysia. Based on field water requirements and available flows at the intake structures, canal simulation was performed using the CanalMan model (Utah State University) together with water balance. The results have shown that pre-saturation should not be done continuously unless flow rates are at least 9.00 and 3.00 m 3 s −1 for the Besut and Angga barrages, respectively. If the flow rate falls below these values, then pre-saturation should be done in two phases. However, when the flow rate is between 5.00 and 5.50 m 3 s −1 at Besut barrage, pre-saturation should be done in three phases. The simulated schedules were compared with present pre-saturation schedules and it was observed that irrigable area could be increased by 10% than that at present. During the period of normal irrigation supply to the fields, there must be flow rates of at least 5.00 m 3 s −1 and 1.50 m 3 s −1 at the Besut and Angga barrages, respectively; in order to maintain irrigation supply to the whole irrigation scheme. Otherwise, selective irrigation or irrigation on a rotational basis will have to be enforced. Copyright Springer Science + Business Media, Inc. 2005

Suggested Citation

  • T. Lee & M. Haque & M. Najim, 2005. "Modeling Water Resources Allocation in a Run-of-the-River Rice Irrigation Scheme," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(5), pages 571-584, October.
  • Handle: RePEc:spr:waterr:v:19:y:2005:i:5:p:571-584
    DOI: 10.1007/s11269-005-3019-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-005-3019-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-005-3019-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tuong, T. P. & Bhuiyan, S. I., 1999. "Increasing water-use efficiency in rice production: farm-level perspectives," Agricultural Water Management, Elsevier, vol. 40(1), pages 117-122, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amarasingha, R.P.R.K. & Suriyagoda, L.D.B. & Marambe, B. & Gaydon, D.S. & Galagedara, L.W. & Punyawardena, R. & Silva, G.L.L.P. & Nidumolu, U. & Howden, M., 2015. "Simulation of crop and water productivity for rice (Oryza sativa L.) using APSIM under diverse agro-climatic conditions and water management techniques in Sri Lanka," Agricultural Water Management, Elsevier, vol. 160(C), pages 132-143.
    2. Choudhury, B.U. & Singh, Anil Kumar & Pradhan, S., 2013. "Estimation of crop coefficients of dry-seeded irrigated rice–wheat rotation on raised beds by field water balance method in the Indo-Gangetic plains, India," Agricultural Water Management, Elsevier, vol. 123(C), pages 20-31.
    3. Zeng, Linghe & Lesch, Scott M. & Grieve, Catherine M., 2003. "Rice growth and yield respond to changes in water depth and salinity stress," Agricultural Water Management, Elsevier, vol. 59(1), pages 67-75, March.
    4. Singh, Uttam Kumar & Ren, Li & Kang, Shaozhong, 2010. "Simulation of soil water in space and time using an agro-hydrological model and remote sensing techniques," Agricultural Water Management, Elsevier, vol. 97(8), pages 1210-1220, August.
    5. Playán, E. & Pérez-Coveta, O. & Marti­nez-Cob, A. & Herrero, J. & Garcia-Navarro, P. & Latorre, B. & Brufau, P. & Garcés, J., 2008. "Overland water and salt flows in a set of rice paddies," Agricultural Water Management, Elsevier, vol. 95(6), pages 645-658, June.
    6. Dai, Junfeng & Cui, Yuanlai & Cai, Xueliang & Brown, Larry C. & Shang, Yuhui, 2016. "Influence of water management on the water cycle in a small watershed irrigation system based on a distributed hydrologic model," Agricultural Water Management, Elsevier, vol. 174(C), pages 52-60.
    7. Arora, V.K., 2006. "Application of a rice growth and water balance model in an irrigated semi-arid subtropical environment," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 51-57, May.
    8. Aimé Sévérin Kima & Etienne Kima & Bernard Bacyé & Paule A. W. Ouédraogo & Ousmane Traore & Seydou Traore & Hervé Nandkangré & Wen-Guey Chung & Yu-Min Wang, 2020. "Evaluating Supplementary Water Methodology with Saturated Soil Irrigation for Yield and Water Productivity Improvement in Semi-Arid Rainfed Rice System, Burkina Faso," Sustainability, MDPI, vol. 12(12), pages 1-17, June.
    9. Garg, Kaushal K. & Das, Bhabani S. & Safeeq, Mohammad & Bhadoria, Pratap B.S., 2009. "Measurement and modeling of soil water regime in a lowland paddy field showing preferential transport," Agricultural Water Management, Elsevier, vol. 96(12), pages 1705-1714, December.
    10. Streefland, Pieter H., 2001. "Public doubts about vaccination safety and resistance against vaccination," Health Policy, Elsevier, vol. 55(3), pages 159-172, March.
    11. Martini, Luiz Fernando Dias & Mezzomo, Rafael Friguetto & Avila, Luis Antonio de & Massey, Joseph Harry & Marchesan, Enio & Zanella, Renato & Peixoto, Sandra Cadore & Refatti, João Paulo & Cassol, Gui, 2013. "Imazethapyr and imazapic runoff under continuous and intermittent irrigation of paddy rice," Agricultural Water Management, Elsevier, vol. 125(C), pages 26-34.
    12. Zhang, H., 2003. "Improving water productivity through deficit irrigation: examples from Syria, the North China Plain and Oregon, USA," IWMI Books, Reports H032649, International Water Management Institute.
    13. Amarasingha, R.P.R.K. & Suriyagoda, L.D.B. & Marambe, B. & Rathnayake, W.M.U.K. & Gaydon, D.S. & Galagedara, L.W. & Punyawardena, R. & Silva, G.L.L.P. & Nidumolu, U. & Howden, M., 2017. "Improving water productivity in moisture-limited rice-based cropping systems through incorporation of maize and mungbean: A modelling approach," Agricultural Water Management, Elsevier, vol. 189(C), pages 111-122.
    14. Chen, Shuai & Mao, Xiaomin & Barry, David Andrew & Yang, Jian, 2019. "Model of crop growth, water flow, and solute transport in layered soil," Agricultural Water Management, Elsevier, vol. 221(C), pages 160-174.
    15. Tuong, T. P. & Bouman, B. A. M., 2003. "Rice production in water-scarce environments," IWMI Books, Reports H032635, International Water Management Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:19:y:2005:i:5:p:571-584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.