IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v3y1995i2p221-234.html
   My bibliography  Save this article

A new algorithm for the Integer Knapsack Problem and its parallelization

Author

Listed:
  • F. Almeida
  • F. García
  • D. Morales
  • J. Roda
  • C. Rodríguez

Abstract

No abstract is available for this item.

Suggested Citation

  • F. Almeida & F. García & D. Morales & J. Roda & C. Rodríguez, 1995. "A new algorithm for the Integer Knapsack Problem and its parallelization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 3(2), pages 221-234, December.
  • Handle: RePEc:spr:topjnl:v:3:y:1995:i:2:p:221-234
    DOI: 10.1007/BF02568586
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02568586
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02568586?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. C. Gilmore & R. E. Gomory, 1965. "Multistage Cutting Stock Problems of Two and More Dimensions," Operations Research, INFORMS, vol. 13(1), pages 94-120, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-François Côté & Manuel Iori, 2018. "The Meet-in-the-Middle Principle for Cutting and Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 646-661, November.
    2. Amanda O. C. Ayres & Betania S. C. Campello & Washington A. Oliveira & Carla T. L. S. Ghidini, 2021. "A Bi-Integrated Model for coupling lot-sizing and cutting-stock problems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(4), pages 1047-1076, December.
    3. Gregory S. Taylor & Yupo Chan & Ghulam Rasool, 2017. "A three-dimensional bin-packing model: exact multicriteria solution and computational complexity," Annals of Operations Research, Springer, vol. 251(1), pages 397-427, April.
    4. Melega, Gislaine Mara & de Araujo, Silvio Alexandre & Jans, Raf, 2018. "Classification and literature review of integrated lot-sizing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 1-19.
    5. W. D. D. Madhavee & N. Saldin & U. C. Vaidyarathna & C. J. Jayawardene, 2018. "A Practical Application of the Generalized Cutting Stock Algorithm," Academic Journal of Applied Mathematical Sciences, Academic Research Publishing Group, vol. 4(3), pages 15-21, 03-2018.
    6. Mhand Hifi & Rym M'Hallah, 2005. "An Exact Algorithm for Constrained Two-Dimensional Two-Staged Cutting Problems," Operations Research, INFORMS, vol. 53(1), pages 140-150, February.
    7. M Hifi & M Michrafy, 2006. "A reactive local search-based algorithm for the disjunctively constrained knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(6), pages 718-726, June.
    8. Gomory, Ralph, 2016. "Origin and early evolution of corner polyhedra," European Journal of Operational Research, Elsevier, vol. 253(3), pages 543-556.
    9. Alberto Caprara, 2008. "Packing d -Dimensional Bins in d Stages," Mathematics of Operations Research, INFORMS, vol. 33(1), pages 203-215, February.
    10. Sierra-Paradinas, María & Soto-Sánchez, Óscar & Alonso-Ayuso, Antonio & Martín-Campo, F. Javier & Gallego, Micael, 2021. "An exact model for a slitting problem in the steel industry," European Journal of Operational Research, Elsevier, vol. 295(1), pages 336-347.
    11. Morabito, Reinaldo & Belluzzo, Luciano, 2007. "Optimising the cutting of wood fibre plates in the hardboard industry," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1405-1420, December.
    12. Wuttke, David A. & Heese, H. Sebastian, 2018. "Two-dimensional cutting stock problem with sequence dependent setup times," European Journal of Operational Research, Elsevier, vol. 265(1), pages 303-315.
    13. Furini, Fabio & Malaguti, Enrico & Medina Durán, Rosa & Persiani, Alfredo & Toth, Paolo, 2012. "A column generation heuristic for the two-dimensional two-staged guillotine cutting stock problem with multiple stock size," European Journal of Operational Research, Elsevier, vol. 218(1), pages 251-260.
    14. Lodi, Andrea & Martello, Silvano & Monaci, Michele, 2002. "Two-dimensional packing problems: A survey," European Journal of Operational Research, Elsevier, vol. 141(2), pages 241-252, September.
    15. Arenales, Marcos & Morabito, Reinaldo, 1995. "An AND/OR-graph approach to the solution of two-dimensional non-guillotine cutting problems," European Journal of Operational Research, Elsevier, vol. 84(3), pages 599-617, August.
    16. Oliveira, Washington A. & Fiorotto, Diego J. & Song, Xiang & Jones, Dylan F., 2021. "An extended goal programming model for the multiobjective integrated lot-sizing and cutting stock problem," European Journal of Operational Research, Elsevier, vol. 295(3), pages 996-1007.
    17. Martins, Gustavo H.A. & Dell, Robert F., 2008. "Solving the pallet loading problem," European Journal of Operational Research, Elsevier, vol. 184(2), pages 429-440, January.
    18. Celia Glass & Jeroen Oostrum, 2010. "Bun splitting: a practical cutting stock problem," Annals of Operations Research, Springer, vol. 179(1), pages 15-33, September.
    19. Yuen, Boon J., 1995. "Improved heuristics for sequencing cutting patterns," European Journal of Operational Research, Elsevier, vol. 87(1), pages 57-64, November.
    20. Mhand Hifi & Toufik Saadi, 2012. "A parallel algorithm for two-staged two-dimensional fixed-orientation cutting problems," Computational Optimization and Applications, Springer, vol. 51(2), pages 783-807, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:3:y:1995:i:2:p:221-234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.