IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v30y2022i1d10.1007_s11750-021-00601-5.html
   My bibliography  Save this article

The target visitation arc routing problem

Author

Listed:
  • Jessica Rodríguez-Pereira

    (Universitat Pompeu Fabra
    Barcelona GSE)

  • Gilbert Laporte

    (HEC Montréal
    University of Bath)

Abstract

This paper studies the target visitation arc routing problem on an undirected graph. This problem combines the well-known undirected rural postman problem and the linear ordering problem. In this problem, there is a set of required edges partitioned into targets, which must be traversed and there are pairwise preferences for the order in which some targets are serviced, which generates a revenue if the preference is satisfied. The aim is to find a tour that traverses all required edges at least once, and offers a compromise between the revenue generated by the order in which targets are serviced, and the routing cost of the tour. A linear integer programming formulation including some families of valid inequalities is proposed. Despite the difficulty of the problem, the model can be used to solve to optimality around 62% of the test instances.

Suggested Citation

  • Jessica Rodríguez-Pereira & Gilbert Laporte, 2022. "The target visitation arc routing problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 60-76, April.
  • Handle: RePEc:spr:topjnl:v:30:y:2022:i:1:d:10.1007_s11750-021-00601-5
    DOI: 10.1007/s11750-021-00601-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11750-021-00601-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11750-021-00601-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marco Colombi & Ángel Corberán & Renata Mansini & Isaac Plana & José M. Sanchis, 2017. "The Hierarchical Mixed Rural Postman Problem," Transportation Science, INFORMS, vol. 51(2), pages 755-770, May.
    2. Letchford, A.N. & Eglese, R.W., 1998. "The rural postman problem with deadline classes," European Journal of Operational Research, Elsevier, vol. 105(3), pages 390-400, March.
    3. Colombi, Marco & Corberán, Ángel & Mansini, Renata & Plana, Isaac & Sanchis, José M., 2017. "The Hierarchical Mixed Rural Postman Problem: Polyhedral analysis and a branch-and-cut algorithm," European Journal of Operational Research, Elsevier, vol. 257(1), pages 1-12.
    4. Alain Hertz & Gilbert Laporte & Pierrette Nanchen Hugo, 1999. "Improvement Procedures for the Undirected Rural Postman Problem," INFORMS Journal on Computing, INFORMS, vol. 11(1), pages 53-62, February.
    5. Javier Alcaraz & Eva M. García-Nové & Mercedes Landete & Juan F. Monge, 2020. "The linear ordering problem with clusters: a new partial ranking," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 646-671, October.
    6. Korteweg, Peter & Volgenant, Ton, 2006. "On the Hierarchical Chinese Postman Problem with linear ordered classes," European Journal of Operational Research, Elsevier, vol. 169(1), pages 41-52, February.
    7. Aráoz, Julián & Fernández, Elena & Meza, Oscar, 2009. "Solving the Prize-collecting Rural Postman Problem," European Journal of Operational Research, Elsevier, vol. 196(3), pages 886-896, August.
    8. Cabral, Edgar Alberto & Gendreau, Michel & Ghiani, Gianpaolo & Laporte, Gilbert, 2004. "Solving the hierarchical Chinese postman problem as a rural postman problem," European Journal of Operational Research, Elsevier, vol. 155(1), pages 44-50, May.
    9. Achim Hildenbrandt, 2018. "Traveling Salesman Problems with Additional Ordering Constraints," Operations Research Proceedings, in: Natalia Kliewer & Jan Fabian Ehmke & Ralf Borndörfer (ed.), Operations Research Proceedings 2017, pages 221-227, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoguang Bao & Xinhao Ni, 2024. "Approximation algorithms for two clustered arc routing problems," Journal of Combinatorial Optimization, Springer, vol. 47(5), pages 1-12, July.
    2. Colombi, Marco & Corberán, Ángel & Mansini, Renata & Plana, Isaac & Sanchis, José M., 2017. "The directed profitable rural postman problem with incompatibility constraints," European Journal of Operational Research, Elsevier, vol. 261(2), pages 549-562.
    3. Colombi, Marco & Corberán, Ángel & Mansini, Renata & Plana, Isaac & Sanchis, José M., 2017. "The Hierarchical Mixed Rural Postman Problem: Polyhedral analysis and a branch-and-cut algorithm," European Journal of Operational Research, Elsevier, vol. 257(1), pages 1-12.
    4. Arbib, Claudio & Servilio, Mara & Archetti, Claudia & Speranza, M. Grazia, 2014. "The directed profitable location Rural Postman Problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 811-819.
    5. Ángel Corberán & Elena Fernández & Carles Franquesa & José María Sanchis, 2011. "The Windy Clustered Prize-Collecting Arc-Routing Problem," Transportation Science, INFORMS, vol. 45(3), pages 317-334, August.
    6. Fung, Richard Y.K. & Liu, Ran & Jiang, Zhibin, 2013. "A memetic algorithm for the open capacitated arc routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 53-67.
    7. Marco Colombi & Ángel Corberán & Renata Mansini & Isaac Plana & José M. Sanchis, 2017. "The Hierarchical Mixed Rural Postman Problem," Transportation Science, INFORMS, vol. 51(2), pages 755-770, May.
    8. Enrique Benavent & Ángel Corberán & Luís Gouveia & Maria Mourão & Leonor Pinto, 2015. "Profitable mixed capacitated arc routing and related problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 244-274, April.
    9. Merve Kayacı Çodur & Mustafa Yılmaz, 2020. "A time-dependent hierarchical Chinese postman problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 337-366, March.
    10. Elena Fernández & Jessica Rodríguez-Pereira, 2017. "Multi-depot rural postman problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 340-372, July.
    11. Ávila, Thais & Corberán, Ángel & Plana, Isaac & Sanchis, José M., 2016. "A branch-and-cut algorithm for the profitable windy rural postman problem," European Journal of Operational Research, Elsevier, vol. 249(3), pages 1092-1101.
    12. Korteweg, Peter & Volgenant, Ton, 2006. "On the Hierarchical Chinese Postman Problem with linear ordered classes," European Journal of Operational Research, Elsevier, vol. 169(1), pages 41-52, February.
    13. Oliver Lum & Bruce Golden & Edward Wasil, 2018. "An Open-Source Desktop Application for Generating Arc-Routing Benchmark Instances," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 361-370, May.
    14. Elena Fernández & Gilbert Laporte & Jessica Rodríguez-Pereira, 2018. "A Branch-and-Cut Algorithm for the Multidepot Rural Postman Problem," Transportation Science, INFORMS, vol. 52(2), pages 353-369, March.
    15. Claudia Archetti & M. Grazia Speranza & Ángel Corberán & José M. Sanchis & Isaac Plana, 2014. "The Team Orienteering Arc Routing Problem," Transportation Science, INFORMS, vol. 48(3), pages 442-457, August.
    16. Nathalie Perrier & André Langevin & Ciro-Alberto Amaya, 2008. "Vehicle Routing for Urban Snow Plowing Operations," Transportation Science, INFORMS, vol. 42(1), pages 44-56, February.
    17. Nossack, Jenny & Golden, Bruce & Pesch, Erwin & Zhang, Rui, 2017. "The windy rural postman problem with a time-dependent zigzag option," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1131-1142.
    18. Achim Hildenbrandt, 2019. "A branch-and-cut algorithm for the target visitation problem," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 209-242, September.
    19. Akbari, Vahid & Salman, F. Sibel, 2017. "Multi-vehicle synchronized arc routing problem to restore post-disaster network connectivity," European Journal of Operational Research, Elsevier, vol. 257(2), pages 625-640.
    20. Barbara De Rosa & Gennaro Improta & Gianpaolo Ghiani & Roberto Musmanno, 2002. "The Arc Routing and Scheduling Problem with Transshipment," Transportation Science, INFORMS, vol. 36(3), pages 301-313, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:30:y:2022:i:1:d:10.1007_s11750-021-00601-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.