IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v326y2023i1d10.1007_s10479-023-05279-5.html
   My bibliography  Save this article

Extensions to the planar p-median problem

Author

Listed:
  • Richard L. Church

    (University of California, Santa Barbara)

  • Zvi Drezner

    (California State University-Fullerton)

  • Pawel Kalczynski

    (California State University-Fullerton)

Abstract

In this paper we propose three models for locating multiple facilities anywhere in the plane. The facilities serve demand points and require raw materials from a list of available sources. Problem characteristic originally proposed in 1909 by Weber for manufacturing systems. Weber argued that optimal locations involve minimizing total transport cost which was comprised of the costs of transporting the raw materials and the delivery cost of the final product when plant production and location costs were invariant across the plane. Both the parameters of raw material sources and demand points affect the best locations for the facilities. In this paper, a special algorithm is designed to heuristically solve these three models. The algorithm exploits the special structure of the models. Problems with up to 2000 demand points and 20 facilities were tested. The results are compared with applying available non-linear solvers in a multi-start approach. The special algorithm performed better in most instances especially for a large number of facilities and a large number of demand points.

Suggested Citation

  • Richard L. Church & Zvi Drezner & Pawel Kalczynski, 2023. "Extensions to the planar p-median problem," Annals of Operations Research, Springer, vol. 326(1), pages 115-135, July.
  • Handle: RePEc:spr:annopr:v:326:y:2023:i:1:d:10.1007_s10479-023-05279-5
    DOI: 10.1007/s10479-023-05279-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05279-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05279-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Brimberg & S. Salhi, 2019. "A General Framework for Local Search Applied to the Continuous p-Median Problem," International Series in Operations Research & Management Science, in: H. A. Eiselt & Vladimir Marianov (ed.), Contributions to Location Analysis, chapter 0, pages 89-108, Springer.
    2. Murray, Alan T. & Church, Richard L. & Feng, Xin, 2020. "Single facility siting involving allocation decisions," European Journal of Operational Research, Elsevier, vol. 284(3), pages 834-846.
    3. Richard L. Church, 2019. "Understanding the Weber Location Paradigm," International Series in Operations Research & Management Science, in: H. A. Eiselt & Vladimir Marianov (ed.), Contributions to Location Analysis, chapter 0, pages 69-88, Springer.
    4. Jack Brimberg & Pierre Hansen & Nenad Mladenović & Eric D. Taillard, 2000. "Improvements and Comparison of Heuristics for Solving the Uncapacitated Multisource Weber Problem," Operations Research, INFORMS, vol. 48(3), pages 444-460, June.
    5. Leon Cooper, 1963. "Location-Allocation Problems," Operations Research, INFORMS, vol. 11(3), pages 331-343, June.
    6. Zvi Drezner & Said Salhi, 2017. "Incorporating neighborhood reduction for the solution of the planar p-median problem," Annals of Operations Research, Springer, vol. 258(2), pages 639-654, November.
    7. Drezner, Zvi & Kalczynski, Pawel & Salhi, Said, 2019. "The planar multiple obnoxious facilities location problem: A Voronoi based heuristic," Omega, Elsevier, vol. 87(C), pages 105-116.
    8. Drezner, Tammy & Drezner, Zvi & Salhi, Said, 2002. "Solving the multiple competitive facilities location problem," European Journal of Operational Research, Elsevier, vol. 142(1), pages 138-151, October.
    9. Lawrence M. Ostresh, 1978. "On the Convergence of a Class of Iterative Methods for Solving the Weber Location Problem," Operations Research, INFORMS, vol. 26(4), pages 597-609, August.
    10. Pawel Kalczynski & Jack Brimberg & Zvi Drezner, 2022. "Less is more: discrete starting solutions in the planar p-median problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 34-59, April.
    11. Pawel Kalczynski & Atsuo Suzuki & Zvi Drezner, 2022. "Multiple obnoxious facilities with weighted demand points," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(3), pages 598-607, March.
    12. Zvi Drezner, 2019. "My Career and Contributions," International Series in Operations Research & Management Science, in: H. A. Eiselt & Vladimir Marianov (ed.), Contributions to Location Analysis, chapter 0, pages 1-67, Springer.
    13. Osman Alp & Erhan Erkut & Zvi Drezner, 2003. "An Efficient Genetic Algorithm for the p-Median Problem," Annals of Operations Research, Springer, vol. 122(1), pages 21-42, September.
    14. Mark S. Daskin & Kayse Lee Maass, 2015. "The p-Median Problem," Springer Books, in: Gilbert Laporte & Stefan Nickel & Francisco Saldanha da Gama (ed.), Location Science, edition 127, chapter 0, pages 21-45, Springer.
    15. Zvi Drezner & Jack Brimberg & Nenad Mladenović & Said Salhi, 2016. "New local searches for solving the multi-source Weber problem," Annals of Operations Research, Springer, vol. 246(1), pages 181-203, November.
    16. İ K Altınel & N Aras & K C Özkısacık, 2011. "Variable neighbourhood search heuristics for the probabilistic multi-source Weber problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1813-1826, October.
    17. Włodzimierz Ogryczak & Mariusz Zawadzki, 2002. "Conditional Median: A Parametric Solution Concept for Location Problems," Annals of Operations Research, Springer, vol. 110(1), pages 167-181, February.
    18. İ K Altınel & N Aras & K C Özkısacık, 2011. "Variable neighbourhood search heuristics for the probabilistic multi-source Weber problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1813-1826, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pawel Kalczynski & Jack Brimberg & Zvi Drezner, 2022. "Less is more: discrete starting solutions in the planar p-median problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 34-59, April.
    2. Kalczynski, Pawel & Drezner, Zvi, 2022. "The Obnoxious Facilities Planar p-Median Problem with Variable Sizes," Omega, Elsevier, vol. 111(C).
    3. Blanco, Víctor & Gázquez, Ricardo & Ponce, Diego & Puerto, Justo, 2023. "A branch-and-price approach for the continuous multifacility monotone ordered median problem," European Journal of Operational Research, Elsevier, vol. 306(1), pages 105-126.
    4. Jean-Paul Arnaout & John Khoury, 2022. "Adaptation of WO to the Euclidean location-allocation with unknown number of facilities," Annals of Operations Research, Springer, vol. 315(1), pages 57-72, August.
    5. Gökhan Altay & M. Hakan Akyüz & Temel Öncan, 2023. "Solving a minisum single facility location problem in three regions with different norms," Annals of Operations Research, Springer, vol. 321(1), pages 1-37, February.
    6. Zvi Drezner & Taly Dawn Drezner, 2020. "Biologically Inspired Parent Selection in Genetic Algorithms," Annals of Operations Research, Springer, vol. 287(1), pages 161-183, April.
    7. Drezner, Zvi & Eiselt, H.A., 2024. "Competitive location models: A review," European Journal of Operational Research, Elsevier, vol. 316(1), pages 5-18.
    8. Pawel Kalczynski & Zvi Drezner, 2021. "The obnoxious facilities planar p-median problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(2), pages 577-593, June.
    9. Tammy Drezner & Zvi Drezner & Pawel Kalczynski, 2021. "Directional approach to gradual cover: the continuous case," Computational Management Science, Springer, vol. 18(1), pages 25-47, January.
    10. Murray, Alan T. & Church, Richard L. & Feng, Xin, 2020. "Single facility siting involving allocation decisions," European Journal of Operational Research, Elsevier, vol. 284(3), pages 834-846.
    11. Zvi Drezner & Said Salhi, 2017. "Incorporating neighborhood reduction for the solution of the planar p-median problem," Annals of Operations Research, Springer, vol. 258(2), pages 639-654, November.
    12. Tammy Drezner & Zvi Drezner & Pawel Kalczynski, 2019. "A directional approach to gradual cover," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 70-93, April.
    13. Zvi Drezner & Dawit Zerom, 2023. "Competitive facility location under attrition," Computational Management Science, Springer, vol. 20(1), pages 1-19, December.
    14. N Aras & K C Özkısacık & İ K Altınel, 2006. "Solving the uncapacitated multi-facility Weber problem by vector quantization and self-organizing maps," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(1), pages 82-93, January.
    15. T Drezner & Z Drezner & P Kalczynski, 2011. "A cover-based competitive location model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 100-113, January.
    16. J. Redondo & J. Fernández & I. García & P. Ortigosa, 2011. "Parallel algorithms for continuous multifacility competitive location problems," Journal of Global Optimization, Springer, vol. 50(4), pages 557-573, August.
    17. Jianlin Jiang & Su Zhang & Yibing Lv & Xin Du & Ziwei Yan, 2020. "An ADMM-based location–allocation algorithm for nonconvex constrained multi-source Weber problem under gauge," Journal of Global Optimization, Springer, vol. 76(4), pages 793-818, April.
    18. Venkateshan, Prahalad & Ballou, Ronald H. & Mathur, Kamlesh & Maruthasalam, Arulanantha P.P., 2017. "A Two-echelon joint continuous-discrete location model," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1028-1039.
    19. Marilène Cherkesly & Claudio Contardo, 2021. "The conditional p-dispersion problem," Journal of Global Optimization, Springer, vol. 81(1), pages 23-83, September.
    20. Zvi Drezner & Jack Brimberg & Nenad Mladenović & Said Salhi, 2016. "New local searches for solving the multi-source Weber problem," Annals of Operations Research, Springer, vol. 246(1), pages 181-203, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:326:y:2023:i:1:d:10.1007_s10479-023-05279-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.