IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v23y2015i1p220-243.html
   My bibliography  Save this article

The paired many-to-many pickup and delivery problem: an application

Author

Listed:
  • Huey-Kuo Chen
  • Huey-Wen Chou
  • Che-Fu Hsueh
  • Yen-Ju Yu

Abstract

This paper addresses a variation of pickup and delivery problems, named the paired many-to-many pickup and delivery problem (PMPDP), which has never been formally classified in the literature. Given “paired” demands between customer nodes, the PMPDP is to find a set of feasible vehicle routes starting from and ending at the depot such that the constructed objective function can be optimized subject to a set of desired constraints. When the PMPDP is applied to public library delivery operations, interchangeably used with the library vehicle routing problem (LVRP) hereafter, the customer nodes are replaced by library branches and the items to be delivered and picked up become books, videos and materials. To explore the LVRP, a mathematical model is rigorously formulated and a two-stage solution algorithm involving a modified bee colony optimization method is elaborately developed. Using real data from the San Francisco library system, the computational results show that our approach performs fairly well as compared with those approaches that have appeared in the literature. Provided each customer node is visited once, the sensitivity analysis indicates that when the number of dispatched library vehicles is more than what are needed, then the obtained result may get worse. Copyright Sociedad de Estadística e Investigación Operativa 2015

Suggested Citation

  • Huey-Kuo Chen & Huey-Wen Chou & Che-Fu Hsueh & Yen-Ju Yu, 2015. "The paired many-to-many pickup and delivery problem: an application," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 220-243, April.
  • Handle: RePEc:spr:topjnl:v:23:y:2015:i:1:p:220-243
    DOI: 10.1007/s11750-014-0335-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11750-014-0335-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11750-014-0335-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luo, Ying & Schonfeld, Paul, 2007. "A rejected-reinsertion heuristic for the static Dial-A-Ride Problem," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 736-755, August.
    2. Berbeglia, Gerardo & Cordeau, Jean-François & Laporte, Gilbert, 2010. "Dynamic pickup and delivery problems," European Journal of Operational Research, Elsevier, vol. 202(1), pages 8-15, April.
    3. Fu, Liping, 2002. "Scheduling dial-a-ride paratransit under time-varying, stochastic congestion," Transportation Research Part B: Methodological, Elsevier, vol. 36(6), pages 485-506, July.
    4. Gribkovskaia, Irina & Halskau, Oyvind sr. & Laporte, Gilbert & Vlcek, Martin, 2007. "General solutions to the single vehicle routing problem with pickups and deliveries," European Journal of Operational Research, Elsevier, vol. 180(2), pages 568-584, July.
    5. Zachariadis, Emmanouil E. & Tarantilis, Christos D. & Kiranoudis, Chris T., 2010. "An adaptive memory methodology for the vehicle routing problem with simultaneous pick-ups and deliveries," European Journal of Operational Research, Elsevier, vol. 202(2), pages 401-411, April.
    6. R M Jorgensen & J Larsen & K B Bergvinsdottir, 2007. "Solving the Dial-a-Ride problem using genetic algorithms," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(10), pages 1321-1331, October.
    7. Cordeau, Jean-François & Laporte, Gilbert, 2003. "A tabu search heuristic for the static multi-vehicle dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 37(6), pages 579-594, July.
    8. John D. C. Little & Katta G. Murty & Dura W. Sweeney & Caroline Karel, 1963. "An Algorithm for the Traveling Salesman Problem," Operations Research, INFORMS, vol. 11(6), pages 972-989, December.
    9. Jean-François Cordeau & Gilbert Laporte, 2007. "The dial-a-ride problem: models and algorithms," Annals of Operations Research, Springer, vol. 153(1), pages 29-46, September.
    10. Szeto, W.Y. & Wu, Yongzhong & Ho, Sin C., 2011. "An artificial bee colony algorithm for the capacitated vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 215(1), pages 126-135, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iassinovskaia, Galina & Limbourg, Sabine & Riane, Fouad, 2017. "The inventory-routing problem of returnable transport items with time windows and simultaneous pickup and delivery in closed-loop supply chains," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 570-582.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yves Molenbruch & Kris Braekers & An Caris, 2017. "Typology and literature review for dial-a-ride problems," Annals of Operations Research, Springer, vol. 259(1), pages 295-325, December.
    2. Braekers, Kris & Caris, An & Janssens, Gerrit K., 2014. "Exact and meta-heuristic approach for a general heterogeneous dial-a-ride problem with multiple depots," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 166-186.
    3. Paquette, Julie & Cordeau, Jean-François & Laporte, Gilbert & Pascoal, Marta M.B., 2013. "Combining multicriteria analysis and tabu search for dial-a-ride problems," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 1-16.
    4. Ho, Sin C. & Szeto, W.Y. & Kuo, Yong-Hong & Leung, Janny M.Y. & Petering, Matthew & Tou, Terence W.H., 2018. "A survey of dial-a-ride problems: Literature review and recent developments," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 395-421.
    5. Karabuk, Suleyman, 2009. "A nested decomposition approach for solving the paratransit vehicle scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 43(4), pages 448-465, May.
    6. Stefan Vonolfen & Michael Affenzeller, 2016. "Distribution of waiting time for dynamic pickup and delivery problems," Annals of Operations Research, Springer, vol. 236(2), pages 359-382, January.
    7. Gupta, Diwakar & Chen, Hao-Wei & Miller, Lisa A. & Surya, Fajarrani, 2010. "Improving the efficiency of demand-responsive paratransit services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(4), pages 201-217, May.
    8. Masmoudi, Mohamed Amine & Hosny, Manar & Demir, Emrah & Genikomsakis, Konstantinos N. & Cheikhrouhou, Naoufel, 2018. "The dial-a-ride problem with electric vehicles and battery swapping stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 392-420.
    9. Sharif Azadeh, Sh. & Atasoy, Bilge & Ben-Akiva, Moshe E. & Bierlaire, M. & Maknoon, M.Y., 2022. "Choice-driven dial-a-ride problem for demand responsive mobility service," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 128-149.
    10. Gerardo Berbeglia & Jean-François Cordeau & Irina Gribkovskaia & Gilbert Laporte, 2007. "Static pickup and delivery problems: a classification scheme and survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 1-31, July.
    11. Stefan Vonolfen & Michael Affenzeller, 2016. "Distribution of waiting time for dynamic pickup and delivery problems," Annals of Operations Research, Springer, vol. 236(2), pages 359-382, January.
    12. Shangyao Yan & Chun-Ying Chen, 2011. "An optimization model and a solution algorithm for the many-to-many car pooling problem," Annals of Operations Research, Springer, vol. 191(1), pages 37-71, November.
    13. Schilde, M. & Doerner, K.F. & Hartl, R.F., 2014. "Integrating stochastic time-dependent travel speed in solution methods for the dynamic dial-a-ride problem," European Journal of Operational Research, Elsevier, vol. 238(1), pages 18-30.
    14. Sheridan, Patricia Kristine & Gluck, Erich & Guan, Qi & Pickles, Thomas & Balcıog˜lu, Barış & Benhabib, Beno, 2013. "The dynamic nearest neighbor policy for the multi-vehicle pick-up and delivery problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 178-194.
    15. Kirchler, Dominik & Wolfler Calvo, Roberto, 2013. "A Granular Tabu Search algorithm for the Dial-a-Ride Problem," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 120-135.
    16. Christian Pfeiffer & Arne Schulz, 2022. "An ALNS algorithm for the static dial-a-ride problem with ride and waiting time minimization," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 87-119, March.
    17. Rahman, Md Hishamur & Chen, Shijie & Sun, Yanshuo & Siddiqui, Muhammad Imran Younus & Mohebbi, Matthew & Marković, Nikola, 2023. "Integrating dial-a-ride with transportation network companies for cost efficiency: A Maryland case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    18. Andrew Lim & Zhenzhen Zhang & Hu Qin, 2017. "Pickup and Delivery Service with Manpower Planning in Hong Kong Public Hospitals," Transportation Science, INFORMS, vol. 51(2), pages 688-705, May.
    19. Zhan, Xingbin & Szeto, W.Y. & Shui, C.S. & Chen, Xiqun (Michael), 2021. "A modified artificial bee colony algorithm for the dynamic ride-hailing sharing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    20. Liu, Mengyang & Luo, Zhixing & Lim, Andrew, 2015. "A branch-and-cut algorithm for a realistic dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 267-288.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:23:y:2015:i:1:p:220-243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.