IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v20y2012i1p52-74.html
   My bibliography  Save this article

Enhancing discretized formulations: the knapsack reformulation and the star reformulation

Author

Listed:
  • Luís Gouveia
  • Pedro Moura

Abstract

No abstract is available for this item.

Suggested Citation

  • Luís Gouveia & Pedro Moura, 2012. "Enhancing discretized formulations: the knapsack reformulation and the star reformulation," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 52-74, April.
  • Handle: RePEc:spr:topjnl:v:20:y:2012:i:1:p:52-74
    DOI: 10.1007/s11750-011-0212-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11750-011-0212-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11750-011-0212-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gouveia, Luis & Vo[ss], Stefan, 1995. "A classification of formulations for the (time-dependent) traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 83(1), pages 69-82, May.
    2. Correia, Isabel & Gouveia, Luís & Saldanha-da-Gama, Francisco, 2010. "Discretized formulations for capacitated location problems with modular distribution costs," European Journal of Operational Research, Elsevier, vol. 204(2), pages 237-244, July.
    3. Luis Gouveia, 1995. "A 2n Constraint Formulation for the Capacitated Minimal Spanning Tree Problem," Operations Research, INFORMS, vol. 43(1), pages 130-141, February.
    4. Albareda-Sambola, Maria & Fernández, Elena & Saldanha-da-Gama, Francisco, 2011. "The facility location problem with Bernoulli demands," Omega, Elsevier, vol. 39(3), pages 335-345, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gouveia, Luís & Lopes, Maria João & de Sousa, Amaro, 2015. "Single PON network design with unconstrained splitting stages," European Journal of Operational Research, Elsevier, vol. 240(2), pages 361-371.
    2. Erika Buson & Roberto Roberti & Paolo Toth, 2014. "A Reduced-Cost Iterated Local Search Heuristic for the Fixed-Charge Transportation Problem," Operations Research, INFORMS, vol. 62(5), pages 1095-1106, October.
    3. Bernard Gendron & Luis Gouveia, 2017. "Reformulations by Discretization for Piecewise Linear Integer Multicommodity Network Flow Problems," Transportation Science, INFORMS, vol. 51(2), pages 629-649, May.
    4. Zorica Dražić & Aleksandar Savić & Vladimir Filipović, 2014. "An integer linear formulation for the file transfer scheduling problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 1062-1073, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bernard Gendron & Luis Gouveia, 2017. "Reformulations by Discretization for Piecewise Linear Integer Multicommodity Network Flow Problems," Transportation Science, INFORMS, vol. 51(2), pages 629-649, May.
    2. Erika Buson & Roberto Roberti & Paolo Toth, 2014. "A Reduced-Cost Iterated Local Search Heuristic for the Fixed-Charge Transportation Problem," Operations Research, INFORMS, vol. 62(5), pages 1095-1106, October.
    3. Gouveia, Luis & Leitner, Markus & Ruthmair, Mario, 2017. "Extended formulations and branch-and-cut algorithms for the Black-and-White Traveling Salesman Problem," European Journal of Operational Research, Elsevier, vol. 262(3), pages 908-928.
    4. Gouveia, Luís & Paias, Ana & Ponte, Mafalda, 2023. "The travelling salesman problem with positional consistency constraints: An application to healthcare services," European Journal of Operational Research, Elsevier, vol. 308(3), pages 960-989.
    5. Fernandes, Lucinda Matos & Gouveia, Luis, 1998. "Minimal spanning trees with a constraint on the number of leaves," European Journal of Operational Research, Elsevier, vol. 104(1), pages 250-261, January.
    6. Sune Lauth Gadegaard & Andreas Klose & Lars Relund Nielsen, 2018. "An improved cut-and-solve algorithm for the single-source capacitated facility location problem," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 1-27, March.
    7. Silva, Marcos Melo & Subramanian, Anand & Vidal, Thibaut & Ochi, Luiz Satoru, 2012. "A simple and effective metaheuristic for the Minimum Latency Problem," European Journal of Operational Research, Elsevier, vol. 221(3), pages 513-520.
    8. Furini, Fabio & Persiani, Carlo Alfredo & Toth, Paolo, 2016. "The Time Dependent Traveling Salesman Planning Problem in Controlled Airspace," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 38-55.
    9. Rahma Lahyani & Leandro C. Coelho & Jacques Renaud, 2018. "Alternative formulations and improved bounds for the multi-depot fleet size and mix vehicle routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 125-157, January.
    10. Sanjay Dominik Jena & Jean-François Cordeau & Bernard Gendron, 2015. "Dynamic Facility Location with Generalized Modular Capacities," Transportation Science, INFORMS, vol. 49(3), pages 484-499, August.
    11. Rivera, Juan Carlos & Murat Afsar, H. & Prins, Christian, 2016. "Mathematical formulations and exact algorithm for the multitrip cumulative capacitated single-vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 249(1), pages 93-104.
    12. Vatsa, Amit Kumar & Jayaswal, Sachin, 2015. "A New Formulation and Benders' Decomposition for Multi-period facility Location Problem with Server Uncertainty," IIMA Working Papers WP2015-02-07, Indian Institute of Management Ahmedabad, Research and Publication Department.
    13. Tue R. L. Christensen & Kim Allan Andersen & Andreas Klose, 2013. "Solving the Single-Sink, Fixed-Charge, Multiple-Choice Transportation Problem by Dynamic Programming," Transportation Science, INFORMS, vol. 47(3), pages 428-438, August.
    14. Boysen, Nils & Schwerdfeger, Stefan & Weidinger, Felix, 2018. "Scheduling last-mile deliveries with truck-based autonomous robots," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1085-1099.
    15. Pages, Laia & Jayakrishnan, R. & Cortes, Cristian E., 2005. "Real-Time Mass Passenger Transport Network Optimization Problems," University of California Transportation Center, Working Papers qt7w88d089, University of California Transportation Center.
    16. Xiaojun Zhu & Shaojie Tang, 2021. "A Branch-and-Bound Algorithm for Building Optimal Data Gathering Tree in Wireless Sensor Networks," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1446-1460, October.
    17. Beltran-Royo, C., 2017. "Two-stage stochastic mixed-integer linear programming: The conditional scenario approach," Omega, Elsevier, vol. 70(C), pages 31-42.
    18. Vatsa, Amit Kumar & Jayaswal, Sachin, 2016. "A new formulation and Benders decomposition for the multi-period maximal covering facility location problem with server uncertainty," European Journal of Operational Research, Elsevier, vol. 251(2), pages 404-418.
    19. F. Angel-Bello & Y. Cardona-Valdés & A. Álvarez, 2019. "Mixed integer formulations for the multiple minimum latency problem," Operational Research, Springer, vol. 19(2), pages 369-398, June.
    20. Jean-François Cordeau & Gianpaolo Ghiani & Emanuela Guerriero, 2014. "Analysis and Branch-and-Cut Algorithm for the Time-Dependent Travelling Salesman Problem," Transportation Science, INFORMS, vol. 48(1), pages 46-58, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:20:y:2012:i:1:p:52-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.