IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v33y2024i3d10.1007_s11749-024-00923-z.html
   My bibliography  Save this article

Data integration via analysis of subspaces (DIVAS)

Author

Listed:
  • Jack Prothero

    (National Institute of Standards and Technology)

  • Meilei Jiang

    (Menlo Park)

  • Jan Hannig

    (UNC-Chapel Hill: The University of North Carolina at Chapel Hill)

  • Quoc Tran-Dinh

    (UNC-Chapel Hill: The University of North Carolina at Chapel Hill)

  • Andrew Ackerman

    (UNC-Chapel Hill: The University of North Carolina at Chapel Hill)

  • J. S. Marron

    (UNC-Chapel Hill: The University of North Carolina at Chapel Hill)

Abstract

Modern data collection in many data paradigms, including bioinformatics, often incorporates multiple traits derived from different data types (i.e., platforms). We call this data multi-block, multi-view, or multi-omics data. The emergent field of data integration develops and applies new methods for studying multi-block data and identifying how different data types relate and differ. One major frontier in contemporary data integration research is methodology that can identify partially shared structure between sub-collections of data types. This work presents a new approach: Data Integration Via Analysis of Subspaces (DIVAS). DIVAS combines new insights in angular subspace perturbation theory with recent developments in matrix signal processing and convex–concave optimization into one algorithm for exploring partially shared structure. Based on principal angles between subspaces, DIVAS provides built-in inference on the results of the analysis, and is effective even in high-dimension-low-sample-size (HDLSS) situations.

Suggested Citation

  • Jack Prothero & Meilei Jiang & Jan Hannig & Quoc Tran-Dinh & Andrew Ackerman & J. S. Marron, 2024. "Data integration via analysis of subspaces (DIVAS)," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(3), pages 633-674, September.
  • Handle: RePEc:spr:testjl:v:33:y:2024:i:3:d:10.1007_s11749-024-00923-z
    DOI: 10.1007/s11749-024-00923-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-024-00923-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-024-00923-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Horst, 1961. "Relations amongm sets of measures," Psychometrika, Springer;The Psychometric Society, vol. 26(2), pages 129-149, June.
    2. Feng, Qing & Jiang, Meilei & Hannig, Jan & Marron, J.S., 2018. "Angle-based joint and individual variation explained," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 241-265.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Xi & Hoadley, Katherine A. & Hannig, Jan & Marron, J.S., 2023. "Jackstraw inference for AJIVE data integration," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    2. Pietro Amenta & Antonio Lucadamo & Antonello D’Ambra, 2021. "Restricted Common Component and Specific Weight Analysis: A Constrained Explorative Approach for the Customer Satisfaction Evaluation," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 409-427, August.
    3. Lei-Hong Zhang & Li-Zhi Liao & Li-Ming Sun, 2011. "Towards the global solution of the maximal correlation problem," Journal of Global Optimization, Springer, vol. 49(1), pages 91-107, January.
    4. Walter Kristof, 1967. "Orthogonal inter-battery factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 32(2), pages 199-227, June.
    5. Vartan Choulakian, 2011. "Picture of all Solutions of Successive 2-Block Maxbet Problems," Psychometrika, Springer;The Psychometric Society, vol. 76(4), pages 550-563, October.
    6. Irina Gaynanova & Renat Sergazinov, 2024. "Comments on: Data integration via analysis of subspaces (DIVAS)," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(3), pages 675-682, September.
    7. J. S. Marron, 2019. "Comments on: Data science, big data and statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 342-344, June.
    8. Jörg Henseler, 2010. "On the convergence of the partial least squares path modeling algorithm," Computational Statistics, Springer, vol. 25(1), pages 107-120, March.
    9. Shizuhiko Nishisato & Wen-Jenn Sheu, 1980. "Piecewise method of reciprocal averages for dual scaling of multiple-choice data," Psychometrika, Springer;The Psychometric Society, vol. 45(4), pages 467-478, December.
    10. Davide Pigoli & Pantelis Z. Hadjipantelis & John S. Coleman & John A. D. Aston, 2018. "The statistical analysis of acoustic phonetic data: exploring differences between spoken Romance languages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1103-1145, November.
    11. Jacques Bénasséni & Mohammed Bennani Dosse, 2012. "Analyzing multiset data by the Power STATIS-ACT method," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(1), pages 49-65, April.
    12. John Geer, 1984. "Linear relations amongk sets of variables," Psychometrika, Springer;The Psychometric Society, vol. 49(1), pages 79-94, March.
    13. Hanafi, M. & Qannari, E. M., 2005. "An alternative algorithm to the PLS B problem," Computational Statistics & Data Analysis, Elsevier, vol. 48(1), pages 63-67, January.
    14. Ke-Lin Du & Rengong Zhang & Bingchun Jiang & Jie Zeng & Jiabin Lu, 2025. "Foundations and Innovations in Data Fusion and Ensemble Learning for Effective Consensus," Mathematics, MDPI, vol. 13(4), pages 1-49, February.
    15. Hanafi, Mohamed & Kiers, Henk A.L., 2006. "Analysis of K sets of data, with differential emphasis on agreement between and within sets," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1491-1508, December.
    16. Stan Lipovetsky, 2022. "Canonical Concordance Correlation Analysis," Mathematics, MDPI, vol. 11(1), pages 1-12, December.
    17. Tenenhaus, Arthur & Philippe, Cathy & Frouin, Vincent, 2015. "Kernel Generalized Canonical Correlation Analysis," Computational Statistics & Data Analysis, Elsevier, vol. 90(C), pages 114-131.
    18. Lei-Hong Zhang & Li-Zhi Liao, 2012. "An alternating variable method for the maximal correlation problem," Journal of Global Optimization, Springer, vol. 54(1), pages 199-218, September.
    19. Michel Tenenhaus & Arthur Tenenhaus & Patrick J. F. Groenen, 2017. "Regularized Generalized Canonical Correlation Analysis: A Framework for Sequential Multiblock Component Methods," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 737-777, September.
    20. Christian Barrère & Quentin Bonnard & Véronique Noblot Chossat, 2014. "Are we at a turning point in the evolution of gastronomy? Paris: An exemplary case [Sommes-nous à un tournant dans l'évolution de la gastronomie : l'exemple de Paris]," Post-Print hal-02613503, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:33:y:2024:i:3:d:10.1007_s11749-024-00923-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.