IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v18y2009i2p283-301.html
   My bibliography  Save this article

On the low intensity bootstrap for triangular arrays of independent identically distributed random variables

Author

Listed:
  • Eustasio del Barrio
  • Arnold Janssen
  • Carlos Matrán

Abstract

No abstract is available for this item.

Suggested Citation

  • Eustasio del Barrio & Arnold Janssen & Carlos Matrán, 2009. "On the low intensity bootstrap for triangular arrays of independent identically distributed random variables," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(2), pages 283-301, August.
  • Handle: RePEc:spr:testjl:v:18:y:2009:i:2:p:283-301
    DOI: 10.1007/s11749-007-0077-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11749-007-0077-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11749-007-0077-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arnold Janssen, 2005. "Resampling student'st-type statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(3), pages 507-529, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hagemann, Andreas, 2019. "Placebo inference on treatment effects when the number of clusters is small," Journal of Econometrics, Elsevier, vol. 213(1), pages 190-209.
    2. Ali Al-Sharadqah & Majid Mojirsheibani & William Pouliot, 2020. "On the performance of weighted bootstrapped kernel deconvolution density estimators," Statistical Papers, Springer, vol. 61(4), pages 1773-1798, August.
    3. Friedrich, Sarah & Brunner, Edgar & Pauly, Markus, 2017. "Permuting longitudinal data in spite of the dependencies," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 255-265.
    4. Marc Ditzhaus & Arnold Janssen, 2020. "Bootstrap and permutation rank tests for proportional hazards under right censoring," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 493-517, July.
    5. Hani M. Samawi & Robert Vogel, 2014. "Notes on two sample tests for partially correlated (paired) data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(1), pages 109-117, January.
    6. Majid Mojirsheibani, 2022. "On the maximal deviation of kernel regression estimators with NMAR response variables," Statistical Papers, Springer, vol. 63(5), pages 1677-1705, October.
    7. repec:sip:wpaper:12-026 is not listed on IDEAS
    8. Chung, EunYi & Romano, Joseph P., 2016. "Multivariate and multiple permutation tests," Journal of Econometrics, Elsevier, vol. 193(1), pages 76-91.
    9. Ali Al-Sharadqah & Majid Mojirsheibani, 2020. "A simple approach to construct confidence bands for a regression function with incomplete data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(1), pages 81-99, March.
    10. Juwon Seo, 2018. "Randomization Tests for Equality in Dependence Structure," Papers 1811.02105, arXiv.org.
    11. Cyrus J. DiCiccio & Joseph P. Romano, 2017. "Robust Permutation Tests For Correlation And Regression Coefficients," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1211-1220, July.
    12. Salim Bouzebda & Chrysanthi Papamichail & Nikolaos Limnios, 2018. "On a multidimensional general bootstrap for empirical estimator of continuous-time semi-Markov kernels with applications," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 30(1), pages 49-86, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:18:y:2009:i:2:p:283-301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.