IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v15y2006i1p97-123.html
   My bibliography  Save this article

Item response theory for longitudinal data: Item and population ability parameters estimation

Author

Listed:
  • Heliton Tavares
  • Dalton Andrade

Abstract

No abstract is available for this item.

Suggested Citation

  • Heliton Tavares & Dalton Andrade, 2006. "Item response theory for longitudinal data: Item and population ability parameters estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 97-123, June.
  • Handle: RePEc:spr:testjl:v:15:y:2006:i:1:p:97-123
    DOI: 10.1007/BF02595420
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02595420
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02595420?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrade, Dalton F. & Tavares, Heliton R., 2005. "Item response theory for longitudinal data: population parameter estimation," Journal of Multivariate Analysis, Elsevier, vol. 95(1), pages 1-22, July.
    2. Jean-Paul Fox & Cees Glas, 2001. "Bayesian estimation of a multilevel IRT model using gibbs sampling," Psychometrika, Springer;The Psychometric Society, vol. 66(2), pages 271-288, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:jss:jstsof:36:c01 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peida Zhan & Hong Jiao & Dandan Liao & Feiming Li, 2019. "A Longitudinal Higher-Order Diagnostic Classification Model," Journal of Educational and Behavioral Statistics, , vol. 44(3), pages 251-281, June.
    2. Sun-Joo Cho & Allan S. Cohen, 2010. "A Multilevel Mixture IRT Model With an Application to DIF," Journal of Educational and Behavioral Statistics, , vol. 35(3), pages 336-370, June.
    3. Sijia Huang & Li Cai, 2024. "Cross-Classified Item Response Theory Modeling With an Application to Student Evaluation of Teaching," Journal of Educational and Behavioral Statistics, , vol. 49(3), pages 311-341, June.
    4. Chun Wang & Steven W. Nydick, 2020. "On Longitudinal Item Response Theory Models: A Didactic," Journal of Educational and Behavioral Statistics, , vol. 45(3), pages 339-368, June.
    5. Michael Edwards, 2010. "A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 474-497, September.
    6. Udo Boehm & Maarten Marsman & Han L. J. Maas & Gunter Maris, 2021. "An Attention-Based Diffusion Model for Psychometric Analyses," Psychometrika, Springer;The Psychometric Society, vol. 86(4), pages 938-972, December.
    7. Ick Hoon Jin & Minjeong Jeon, 2019. "A Doubly Latent Space Joint Model for Local Item and Person Dependence in the Analysis of Item Response Data," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 236-260, March.
    8. Minjeong Jeon & Sophia Rabe-Hesketh, 2012. "Profile-Likelihood Approach for Estimating Generalized Linear Mixed Models With Factor Structures," Journal of Educational and Behavioral Statistics, , vol. 37(4), pages 518-542, August.
    9. Andrade, Dalton F. & Tavares, Heliton R., 2005. "Item response theory for longitudinal data: population parameter estimation," Journal of Multivariate Analysis, Elsevier, vol. 95(1), pages 1-22, July.
    10. Jeffrey Rouder & Dongchu Sun & Paul Speckman & Jun Lu & Duo Zhou, 2003. "A hierarchical bayesian statistical framework for response time distributions," Psychometrika, Springer;The Psychometric Society, vol. 68(4), pages 589-606, December.
    11. Yan Huo & Jimmy de la Torre & Eun-Young Mun & Su-Young Kim & Anne Ray & Yang Jiao & Helene White, 2015. "A Hierarchical Multi-Unidimensional IRT Approach for Analyzing Sparse, Multi-Group Data for Integrative Data Analysis," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 834-855, September.
    12. Simon Hug & Richard Lukács, 2014. "Preferences or blocs? Voting in the United Nations Human Rights Council," The Review of International Organizations, Springer, vol. 9(1), pages 83-106, March.
    13. Bacci, Silvia & Fabbricatore, Rosa & Iannario, Maria, 2023. "Multilevel IRT models for the analysis of satisfaction for distance learning during the Covid-19 pandemic," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    14. Lara Fontanella & Mara Maretti & Annalina Sarra, 2014. "Gender fluidity across the world: a Multilevel Item Response Theory approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(5), pages 2553-2568, September.
    15. Margot Bennink & Marcel A. Croon & Jos Keuning & Jeroen K. Vermunt, 2014. "Measuring Student Ability, Classifying Schools, and Detecting Item Bias at School Level, Based on Student-Level Dichotomous Items," Journal of Educational and Behavioral Statistics, , vol. 39(3), pages 180-202, June.
    16. Mario Quaranta, 2018. "The Meaning of Democracy to Citizens Across European Countries and the Factors Involved," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 136(3), pages 859-880, April.
    17. Hiroshi Tamano & Daichi Mochihashi, 2023. "Dynamical Non-compensatory Multidimensional IRT Model Using Variational Approximation," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 487-526, June.
    18. Zhehan Jiang & Jonathan Templin, 2019. "Gibbs Samplers for Logistic Item Response Models via the Pólya–Gamma Distribution: A Computationally Efficient Data-Augmentation Strategy," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 358-374, June.
    19. Fox, Jean-Paul, 2007. "Multilevel IRT Modeling in Practice with the Package mlirt," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 20(i05).
    20. Minjeong Jeon & Frank Rijmen & Sophia Rabe-Hesketh, 2017. "A Variational Maximization–Maximization Algorithm for Generalized Linear Mixed Models with Crossed Random Effects," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 693-716, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:15:y:2006:i:1:p:97-123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.