IDEAS home Printed from https://ideas.repec.org/a/spr/telsys/v88y2025i1d10.1007_s11235-024-01237-z.html
   My bibliography  Save this article

Securing Fog-enabled IoT: federated learning and generative adversarial networks for intrusion detection

Author

Listed:
  • Ting Lei

    (Chengdu Technological University)

Abstract

Intrusion detection in Fog-enabled Internet of Things (IoT) environments presents unique challenges due to the distributed and heterogeneous nature of data sources. Traditional centralized approaches may not be suitable for Fog computing, where data privacy and latency constraints are critical. This paper proposes a novel framework that integrates federated learning (FL) and generative adversarial networks (GANs) for intrusion detection in Fog-enabled IoT networks. In our approach, each Fog node trains a local GAN model using FL, where the GAN’s discriminator learns to distinguish between normal and anomalous data patterns specific to its local environment. The federated aggregation of these local models at a central server enhances the global understanding of intrusion behaviors across the Fog network without compromising data privacy. We present detailed algorithms for local GAN training, federated model aggregation, and real-time intrusion detection using the GAN discriminator. Experimental results demonstrate the effectiveness of our approach in detecting various types of intrusions while maintaining low latency and preserving data confidentiality in Fog environments.

Suggested Citation

  • Ting Lei, 2025. "Securing Fog-enabled IoT: federated learning and generative adversarial networks for intrusion detection," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 88(1), pages 1-12, March.
  • Handle: RePEc:spr:telsys:v:88:y:2025:i:1:d:10.1007_s11235-024-01237-z
    DOI: 10.1007/s11235-024-01237-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11235-024-01237-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11235-024-01237-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Minggang Liu & Ning Xu, 2024. "Adaptive neural predefined-time hierarchical sliding mode control of switched under-actuated nonlinear systems subject to bouc-wen hysteresis," International Journal of Systems Science, Taylor & Francis Journals, vol. 55(13), pages 2659-2676, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Wenbo & Chang, Xingzhi & Yang, Ping, 2024. "Link prediction in multilayer social networks using reliable local random walk and boosting ensemble classifier," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:88:y:2025:i:1:d:10.1007_s11235-024-01237-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.