IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v188y2024ics0960077924010828.html
   My bibliography  Save this article

Link prediction in multilayer social networks using reliable local random walk and boosting ensemble classifier

Author

Listed:
  • Cai, Wenbo
  • Chang, Xingzhi
  • Yang, Ping

Abstract

This paper presents an enhanced approach for predicting links in social networks by utilizing a Boosting Ensemble Classifier, and Reliable Local Random Walk (BEC-RLRW). Existing methods often fall short in capturing the complex dynamics and inter-layer relationships inherent in multilayer social networks. By integrating reliable LRW with boosting ensemble classifier, our approach aims to address these shortcomings by providing a more reliable similarity metric and a robust classification model. BEC-RLRW creates a novel transition matrix based on a similarity metric based on reliable local random walk. Metrics that convert unweighted to weighted similarity can be effectively created by establishing trustworthy and reliable paths between nodes. Additionally, a popular method for estimating linkages in weighted multilayer networks is the local random walk. The purpose of BEC-RLRW is to develop a reliable local random walk as a multiplex similarity metric in multilayer social networks. In the next step, the features of nodes are extracted based on node2vec embedding and the results are used for edges embedding. When paired with the corresponding positive or negative labels, the resulting edges embedding creates a well-labeled dataset that can be used for link prediction. Eventually, a set of potential edges are identified by applying the well-labeled dataset to a boosting ensemble classifier. To ensure the optimal performance of the proposed algorithm for link prediction in multilayer social networks, we conducted extensive experimental tests on several real-world networks. The obtained results show the efficiency and performance guarantee of our method compared to the existing methods.

Suggested Citation

  • Cai, Wenbo & Chang, Xingzhi & Yang, Ping, 2024. "Link prediction in multilayer social networks using reliable local random walk and boosting ensemble classifier," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924010828
    DOI: 10.1016/j.chaos.2024.115530
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924010828
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115530?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924010828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.