IDEAS home Printed from https://ideas.repec.org/a/spr/telsys/v80y2022i1d10.1007_s11235-022-00879-1.html
   My bibliography  Save this article

Transient analysis of power management in wireless sensor network with start-up times and threshold policy

Author

Listed:
  • R. Sudhesh

    (Anna University)

  • A. Mohammed Shapique

    (IFET College of Engineering)

Abstract

Queueing models play a significant role in analysing the performance of power management systems in various electronic devices and communication systems. This paper adopts a multiple vacation queueing model with a threshold policy to analyse the power-saving mechanisms of the wireless sensor network (WSN) using the dynamic power management technique. The proposed system consists of a busy state (transmit state), wake-up state, shutdown state and inactive state. In this model, the server switches to a shutdown state for a random duration of time after serving all the events (data packets) in the busy state. Events that arrive during the shutdown period cannot be served until the system size reaches the predetermined threshold value of k and further it requires start-up time and a change of state to resume service. At the end of the shutdown period, if the system size is less than k, then the server begins the inactive period; otherwise, the server switches to the wake-up state. For this system, an explicit expression for the transient and steady-state solution is computed in a closed form. Furthermore, performance indices such as mean, variance, probability that the server is in various stages of power management modes and mean power consumption are computed. Finally, graphical illustrations are made to understand the effect of the parameters on the performance of the system.

Suggested Citation

  • R. Sudhesh & A. Mohammed Shapique, 2022. "Transient analysis of power management in wireless sensor network with start-up times and threshold policy," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 80(1), pages 1-16, May.
  • Handle: RePEc:spr:telsys:v:80:y:2022:i:1:d:10.1007_s11235-022-00879-1
    DOI: 10.1007/s11235-022-00879-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11235-022-00879-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11235-022-00879-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. I. G. Suranga Sampath & K. Kalidass & Jicheng Liu, 2020. "Transient Analysis of an M/M/1 Queueing System Subjected to Multiple Differentiated Vacations, Impatient Customers and a Waiting Server with Application to IEEE 802.16E Power Saving Mechanism," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(1), pages 297-320, March.
    2. Chris Blondia, 2021. "A queueing model for a wireless sensor node using energy harvesting," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 77(2), pages 335-349, June.
    3. Ke, Jau-Chuan & Wang, Kuo-Hsiung, 2002. "A recursive method for the N policy G/M/1 queueing system with finite capacity," European Journal of Operational Research, Elsevier, vol. 142(3), pages 577-594, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin Legros, 2021. "Age-based Markovian approximation of the G/M/1 queue," Post-Print hal-03605431, HAL.
    2. Wojciech M. Kempa & Dariusz Kurzyk, 2022. "Analysis of Non-Steady Queue-Length Distribution in a Finite-Buffer Model with Group Arrivals and Power Saving Mechanism with Setups," Energies, MDPI, vol. 15(22), pages 1-15, November.
    3. K.-H. Wang & C.-C. Kuo & W. L. Pearn, 2007. "Optimal Control of an M/G/1/K Queueing System with Combined F Policy and Startup Time," Journal of Optimization Theory and Applications, Springer, vol. 135(2), pages 285-299, November.
    4. Legros, Benjamin, 2022. "The principal-agent problem for service rate event-dependency," European Journal of Operational Research, Elsevier, vol. 297(3), pages 949-963.
    5. Benjamin Legros, 2022. "The principal-agent problem for service rate event-dependency," Post-Print hal-03605421, HAL.
    6. Chris Blondia, 2022. "Evaluation of the Waiting Time in a Finite Capacity Queue with Bursty Input and a Generalized Push-Out Strategy," Mathematics, MDPI, vol. 10(24), pages 1-12, December.
    7. V. Deepa & M. Haridass & Dharmaraja Selvamuthu & Priyanka Kalita, 2023. "Analysis of energy efficiency of small cell base station in 4G/5G networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 82(3), pages 381-401, March.
    8. Abdoun Sylia & Taleb Samira, 2024. "Strategic Joining in an Unobservable Markovian Queue with Differentiated Vacations," SN Operations Research Forum, Springer, vol. 5(3), pages 1-27, September.
    9. A. Mohammed Shapique & R. Sudhesh & S. Dharmaraja, 2024. "Transient Analysis of a Modified Differentiated Vacation Queueing System for Energy-Saving in WiMAX," Methodology and Computing in Applied Probability, Springer, vol. 26(3), pages 1-33, September.
    10. Kahraman, Aykut & Gosavi, Abhijit, 2011. "On the distribution of the number stranded in bulk-arrival, bulk-service queues of the M/G/1 form," European Journal of Operational Research, Elsevier, vol. 212(2), pages 352-360, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:80:y:2022:i:1:d:10.1007_s11235-022-00879-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.