IDEAS home Printed from https://ideas.repec.org/a/spr/telsys/v79y2022i3d10.1007_s11235-021-00843-5.html
   My bibliography  Save this article

An adaptive q-Lognormal model towards the computation of average channel capacity in slow fading channels

Author

Listed:
  • Tanmay Mukherjee

    (Ravenshaw University)

  • Dilip Senapati

    (Ravenshaw University)

Abstract

The characterization of multipath fading and shadowing in wireless communication systems is essential towards the evaluation of various performance measures. It is well known that the statistical characterization of shadowing phenomena is captured by distributions viz., log-normal distribution, gamma distribution and other mixture distributions. However, it is observed that the log-normal distribution fails to characterize the outliers in the fading signal. The extreme fluctuations in the fading signal needs to be characterized efficiently for error free computation of the various performance metrics. In this context, this paper portrays an adaptive generalized Tsallis’ non-extensive q-Lognormal model towards the characterization of various fading channels. This model operates well with the synthesized fading signals and captures the wide range of tail fluctuations to adapt different fading scenarios. The significance and applicability of the proposed novel q-lognormal model in capturing the slow fading channels is validated using different statistical tests viz., chi-square test and symmetric JS measure. Furthermore, essential performance measures viz., the average channel capacity, closed form expression of cumulative distribution function (CDF) in terms of Gauss-Hypergeometric function $${}_2{F_1}\left[ {\mathrm{{a, b, c; z}}} \right] $$ 2 F 1 a , b , c ; z , moment generating function, higher order moments corresponding to q-Lognormal channel capacity and coefficient of variation is evaluated corresponding to the proposed q-lognormal model performing extensive Monte-Carlo simulation techniques up to $$O(10^7)$$ O ( 10 7 ) .

Suggested Citation

  • Tanmay Mukherjee & Dilip Senapati, 2022. "An adaptive q-Lognormal model towards the computation of average channel capacity in slow fading channels," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 79(3), pages 341-355, March.
  • Handle: RePEc:spr:telsys:v:79:y:2022:i:3:d:10.1007_s11235-021-00843-5
    DOI: 10.1007/s11235-021-00843-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11235-021-00843-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11235-021-00843-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Namaki, A. & Koohi Lai, Z. & Jafari, G.R. & Raei, R. & Tehrani, R., 2013. "Comparing emerging and mature markets during times of crises: A non-extensive statistical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(14), pages 3039-3044.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. MohammadReza Zahedian & Mahsa Bagherikalhor & Andrey Trufanov & G. Reza Jafari, 2022. "Financial Crisis in the Framework of Non-zero Temperature Balance Theory," Papers 2202.03198, arXiv.org.
    2. Nikola Gradojevic & Marko Caric, 2017. "Predicting Systemic Risk with Entropic Indicators," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(1), pages 16-25, January.
    3. Ahmad Hajihasani & Ali Namaki & Nazanin Asadi & Reza Tehrani, 2020. "Non-Extensive Value-at-Risk Estimation During Times of Crisis," Papers 2005.09036, arXiv.org, revised Jan 2021.
    4. Gangadhar Nayak & Amit Kumar Singh & Dilip Senapati, 2021. "Computational Modeling of Non-Gaussian Option Price Using Non-extensive Tsallis’ Entropy Framework," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1353-1371, April.
    5. Batra, Luckshay & Taneja, H.C., 2020. "Evaluating volatile stock markets using information theoretic measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    6. Nikola Gradojevic, 2021. "Brexit and foreign exchange market expectations: Could it have been predicted?," Annals of Operations Research, Springer, vol. 297(1), pages 167-189, February.
    7. Zhao, Pan & Xiao, Qingxian, 2016. "Portfolio selection problem with liquidity constraints under non-extensive statistical mechanics," Chaos, Solitons & Fractals, Elsevier, vol. 82(C), pages 5-10.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:79:y:2022:i:3:d:10.1007_s11235-021-00843-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.