IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v82y2016icp5-10.html
   My bibliography  Save this article

Portfolio selection problem with liquidity constraints under non-extensive statistical mechanics

Author

Listed:
  • Zhao, Pan
  • Xiao, Qingxian

Abstract

In this study, we consider the optimal portfolio selection problem with liquidity limits. A portfolio selection model is proposed in which the risky asset price is driven by the process based on non-extensive statistical mechanics instead of the classic Wiener process. Using dynamic programming and Lagrange multiplier methods, we obtain the optimal policy and value function. Moreover, the numerical results indicate that this model is considerably different from the model based on the classic Wiener process, the optimal strategy is affected by the non-extensive parameter q, the increase in the investment in the risky asset is faster at a larger parameter q and the increase in wealth is similar.

Suggested Citation

  • Zhao, Pan & Xiao, Qingxian, 2016. "Portfolio selection problem with liquidity constraints under non-extensive statistical mechanics," Chaos, Solitons & Fractals, Elsevier, vol. 82(C), pages 5-10.
  • Handle: RePEc:eee:chsofr:v:82:y:2016:i:c:p:5-10
    DOI: 10.1016/j.chaos.2015.10.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077915003367
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2015.10.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balasis, Georgios & Daglis, Ioannis A. & Anastasiadis, Anastasios & Papadimitriou, Constantinos & Mandea, Mioara & Eftaxias, Konstantinos, 2011. "Universality in solar flare, magnetic storm and earthquake dynamics using Tsallis statistical mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(2), pages 341-346.
    2. Fu, Chenpeng & Lari-Lavassani, Ali & Li, Xun, 2010. "Dynamic mean-variance portfolio selection with borrowing constraint," European Journal of Operational Research, Elsevier, vol. 200(1), pages 312-319, January.
    3. Vila, Jean-Luc & Zariphopoulou, Thaleia, 1997. "Optimal Consumption and Portfolio Choice with Borrowing Constraints," Journal of Economic Theory, Elsevier, vol. 77(2), pages 402-431, December.
    4. Takahashi, Taiki, 2007. "A comparison of intertemporal choices for oneself versus someone else based on Tsallis’ statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 637-644.
    5. Benoit Mandelbrot, 1963. "New Methods in Statistical Economics," Journal of Political Economy, University of Chicago Press, vol. 71(5), pages 421-421.
    6. Namaki, A. & Koohi Lai, Z. & Jafari, G.R. & Raei, R. & Tehrani, R., 2013. "Comparing emerging and mature markets during times of crises: A non-extensive statistical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(14), pages 3039-3044.
    7. Stavroyiannis, S. & Makris, I. & Nikolaidis, V., 2009. "On the closed form solutions for non-extensive Value at Risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3536-3542.
    8. Lux, Thomas, 1998. "The socio-economic dynamics of speculative markets: interacting agents, chaos, and the fat tails of return distributions," Journal of Economic Behavior & Organization, Elsevier, vol. 33(2), pages 143-165, January.
    9. Lisa Borland, 2002. "A theory of non-Gaussian option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 415-431.
    10. L. Borland & J. P. Bouchaud, 2004. "A Non-Gaussian Option Pricing Model with Skew," Papers cond-mat/0403022, arXiv.org, revised Mar 2004.
    11. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    12. Lisa Borland, 2002. "A Theory of Non_Gaussian Option Pricing," Papers cond-mat/0205078, arXiv.org, revised Dec 2002.
    13. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    14. Tepla, Lucie, 2000. "Optimal portfolio policies with borrowing and shortsale constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1623-1639, October.
    15. Lisa Borland & Jean-Philippe Bouchaud, 2004. "A non-Gaussian option pricing model with skew," Quantitative Finance, Taylor & Francis Journals, vol. 4(5), pages 499-514.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Balbás, Beatriz & Balbás, Raquel, 2018. "Golden options in financial mathematics," IC3JM - Estudios = Working Papers 27672, Instituto Mixto Carlos III - Juan March de Ciencias Sociales (IC3JM).
    2. Zhang, Qingye & Gao, Yan, 2016. "Optimal consumption—portfolio problem with CVaR constraints," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 516-521.
    3. Masoud Rahiminezhad Galankashi & Farimah Mokhatab Rafiei & Maryam Ghezelbash, 2020. "Portfolio selection: a fuzzy-ANP approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-34, December.
    4. repec:cte:idrepe:27672 is not listed on IDEAS
    5. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    6. repec:cte:idrepe:24017 is not listed on IDEAS
    7. repec:cte:idrepe:22932 is not listed on IDEAS
    8. repec:cte:idrepe:23546 is not listed on IDEAS
    9. repec:cte:idrepe:id-16-01 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Federica De Domenico & Giacomo Livan & Guido Montagna & Oreste Nicrosini, 2023. "Modeling and Simulation of Financial Returns under Non-Gaussian Distributions," Papers 2302.02769, arXiv.org.
    2. Ahmad Hajihasani & Ali Namaki & Nazanin Asadi & Reza Tehrani, 2020. "Non-Extensive Value-at-Risk Estimation During Times of Crisis," Papers 2005.09036, arXiv.org, revised Jan 2021.
    3. Gangadhar Nayak & Amit Kumar Singh & Dilip Senapati, 2021. "Computational Modeling of Non-Gaussian Option Price Using Non-extensive Tsallis’ Entropy Framework," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1353-1371, April.
    4. De Domenico, Federica & Livan, Giacomo & Montagna, Guido & Nicrosini, Oreste, 2023. "Modeling and simulation of financial returns under non-Gaussian distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    5. Borland, Lisa, 2016. "Exploring the dynamics of financial markets: from stock prices to strategy returns," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 59-74.
    6. Viktor Stojkoski & Trifce Sandev & Lasko Basnarkov & Ljupco Kocarev & Ralf Metzler, 2020. "Generalised geometric Brownian motion: Theory and applications to option pricing," Papers 2011.00312, arXiv.org.
    7. Rodrigues, Ana Flávia P. & Cavalcante, Charles C. & Crisóstomo, Vicente L., 2019. "A projection pricing model for non-Gaussian financial returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    8. Sosa-Correa, William O. & Ramos, Antônio M.T. & Vasconcelos, Giovani L., 2018. "Investigation of non-Gaussian effects in the Brazilian option market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 525-539.
    9. Wang, Xiao-Tian & Li, Zhe & Zhuang, Le, 2017. "European option pricing under the Student’s t noise with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 848-858.
    10. Anand, Abhinav & Li, Tiantian & Kurosaki, Tetsuo & Kim, Young Shin, 2016. "Foster–Hart optimal portfolios," Journal of Banking & Finance, Elsevier, vol. 68(C), pages 117-130.
    11. Marian Gidea & Yuri Katz, 2017. "Topological Data Analysis of Financial Time Series: Landscapes of Crashes," Papers 1703.04385, arXiv.org, revised Apr 2017.
    12. Baldovin, Fulvio & Caporin, Massimiliano & Caraglio, Michele & Stella, Attilio L. & Zamparo, Marco, 2015. "Option pricing with non-Gaussian scaling and infinite-state switching volatility," Journal of Econometrics, Elsevier, vol. 187(2), pages 486-497.
    13. Zhang, Qingye & Gao, Yan, 2016. "Optimal consumption—portfolio problem with CVaR constraints," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 516-521.
    14. Moretto, Enrico & Pasquali, Sara & Trivellato, Barbara, 2016. "Option pricing under deformed Gaussian distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 446(C), pages 246-263.
    15. Kirchler, Michael & Huber, Jürgen, 2009. "An exploration of commonly observed stylized facts with data from experimental asset markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1631-1658.
    16. Lisa Borland & Jean-Philippe Bouchaud, 2005. "On a multi-timescale statistical feedback model for volatility fluctuations," Science & Finance (CFM) working paper archive 500059, Science & Finance, Capital Fund Management.
    17. Gottschalk, Sylvia, 2017. "Entropy measure of credit risk in highly correlated markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 478(C), pages 11-19.
    18. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    19. L. Borland & J. -Ph. Bouchaud, 2005. "On a multi-timescale statistical feedback model for volatility fluctuations," Papers physics/0507073, arXiv.org.
    20. Trindade, Marco A.S. & Floquet, Sergio & Filho, Lourival M. Silva, 2020. "Portfolio theory, information theory and Tsallis statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:82:y:2016:i:c:p:5-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.