IDEAS home Printed from https://ideas.repec.org/a/spr/telsys/v76y2021i1d10.1007_s11235-020-00701-w.html
   My bibliography  Save this article

Application specific thresholding scheme for handover reduction in 5G Ultra Dense Networks

Author

Listed:
  • Gopalji Gaur

    (Vellore Institute of Technology)

  • T. Velmurugan

    (Vellore Institute of Technology)

  • P. Prakasam

    (Vellore Institute of Technology)

  • S. Nandakumar

    (Vellore Institute of Technology)

Abstract

Traditional multi-criteria decision making (MCDM) algorithms are used in the handover of user equipment (UE) in an Ultra Dense Network (UDN). UDN refers to the increased density of the Radio Access Technologies (RATs) in a region which leads to the overlapping of the areas covered by individual RATs. MCDM algorithms such as TOPSIS, PROMETHEE and SAW are used to initiate handovers between these RATs based on the parameters obtained by the UE from each of the overlapping networks. However, initiating a handover abruptly and frequently, in case of availability of a new RAT without any thresholding technique proves to be unfriendly to the system resources. This can degrade the performance of the system. In this paper, a thresholding approach to the handover procedure is integrated to the MCDM process for the selection of RATs. First, an application-specific approach has been used in the selection of weights using the analytical hierarchy process which, is depending upon the application being used by the user. Then the ranking of the available RATs is done using the various MCDM algorithms and depending on the threshold specified for a handover, a decision is made whether to perform the handover process or not. In the case of streaming class of network traffic, the proposed method improves the performance of the system and reduces the handover by 13.14%, 19.35% and 8.62% of RAT modifications for TOPSIS, PROMETHEE and SAW respectively.

Suggested Citation

  • Gopalji Gaur & T. Velmurugan & P. Prakasam & S. Nandakumar, 2021. "Application specific thresholding scheme for handover reduction in 5G Ultra Dense Networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 76(1), pages 97-113, January.
  • Handle: RePEc:spr:telsys:v:76:y:2021:i:1:d:10.1007_s11235-020-00701-w
    DOI: 10.1007/s11235-020-00701-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11235-020-00701-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11235-020-00701-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas L. Saaty, 1994. "How to Make a Decision: The Analytic Hierarchy Process," Interfaces, INFORMS, vol. 24(6), pages 19-43, December.
    2. Bertrand Mareschal & Jean Pierre Brans & Philippe Vincke, 1986. "How to select and how to rank projects: the Prométhée method," ULB Institutional Repository 2013/9307, ULB -- Universite Libre de Bruxelles.
    3. Brans, J. P. & Vincke, Ph. & Mareschal, B., 1986. "How to select and how to rank projects: The method," European Journal of Operational Research, Elsevier, vol. 24(2), pages 228-238, February.
    4. Thomas L. Saaty & Luis G. Vargas, 2012. "Models, Methods, Concepts & Applications of the Analytic Hierarchy Process," International Series in Operations Research and Management Science, Springer, edition 2, number 978-1-4614-3597-6, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruxing Gao & Hyo On Nam & Won Il Ko & Hong Jang, 2017. "National Options for a Sustainable Nuclear Energy System: MCDM Evaluation Using an Improved Integrated Weighting Approach," Energies, MDPI, vol. 10(12), pages 1-24, December.
    2. Ormerod, Richard J. & Ulrich, Werner, 2013. "Operational research and ethics: A literature review," European Journal of Operational Research, Elsevier, vol. 228(2), pages 291-307.
    3. Rezaei, Jafar, 2015. "Best-worst multi-criteria decision-making method," Omega, Elsevier, vol. 53(C), pages 49-57.
    4. Pelissari, Renata & José Abackerli, Alvaro & Ben Amor, Sarah & Célia Oliveira, Maria & Infante, Kleber Manoel, 2021. "Multiple criteria hierarchy process for sorting problems under uncertainty applied to the evaluation of the operational maturity of research institutions," Omega, Elsevier, vol. 103(C).
    5. Gao, Ruxing & Nam, Hyo On & Ko, Won Il & Jang, Hong, 2018. "Integrated system evaluation of nuclear fuel cycle options in China combined with an analytical MCDM framework," Energy Policy, Elsevier, vol. 114(C), pages 221-233.
    6. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.
    7. Guh, Yuh-Yuan, 1997. "Introduction to a new weighting method -- Hierarchy consistency analysis," European Journal of Operational Research, Elsevier, vol. 102(1), pages 215-226, October.
    8. Hajkowicz, Stefan, 2006. "Taking a closer look at multiple criteria analysis and economic evaluation," 2006 Conference (50th), February 8-10, 2006, Sydney, Australia 139785, Australian Agricultural and Resource Economics Society.
    9. Meløn, Mønica García & Aragonés Beltran, Pablo & Carmen González Cruz, M., 2008. "An AHP-based evaluation procedure for Innovative Educational Projects: A face-to-face vs. computer-mediated case study," Omega, Elsevier, vol. 36(5), pages 754-765, October.
    10. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2018. "σ-µ efficiency analysis: A new methodology for evaluating units through composite indices," MPRA Paper 83569, University Library of Munich, Germany.
    11. Juliana Martins Ruzante & Valerie J. Davidson & Julie Caswell & Aamir Fazil & John A. L. Cranfield & Spencer J. Henson & Sven M. Anders & Claudia Schmidt & Jeffrey M. Farber, 2010. "A Multifactorial Risk Prioritization Framework for Foodborne Pathogens," Risk Analysis, John Wiley & Sons, vol. 30(5), pages 724-742, May.
    12. Mulliner, Emma & Smallbone, Kieran & Maliene, Vida, 2013. "An assessment of sustainable housing affordability using a multiple criteria decision making method," Omega, Elsevier, vol. 41(2), pages 270-279.
    13. Roberto Cervelló Royo & Fernando García García & Francisco Guijarro-Martínez & Ismael Moya-Clemente, 2011. "Housing Ranking: a model of equilibrium between buyers and sellers expectations," ERSA conference papers ersa11p314, European Regional Science Association.
    14. Qian-Yun Tan & Cui-Ping Wei & Qi Liu & Xiang-Qian Feng, 2016. "The Hesitant Fuzzy Linguistic TOPSIS Method Based on Novel Information Measures," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-22, October.
    15. Hajkowicz, Stefan & Higgins, Andrew, 2008. "A comparison of multiple criteria analysis techniques for water resource management," European Journal of Operational Research, Elsevier, vol. 184(1), pages 255-265, January.
    16. Ren, Hongbo & Gao, Weijun & Zhou, Weisheng & Nakagami, Ken'ichi, 2009. "Multi-criteria evaluation for the optimal adoption of distributed residential energy systems in Japan," Energy Policy, Elsevier, vol. 37(12), pages 5484-5493, December.
    17. Marco Rogna, 2019. "A First-Phase Screening Device for Site Selection of Large-Scale Solar Plants with an Application to Italy," BEMPS - Bozen Economics & Management Paper Series BEMPS57, Faculty of Economics and Management at the Free University of Bozen.
    18. Vaillancourt, Kathleen & Waaub, Jean-Philippe, 2002. "Environmental site evaluation of waste management facilities embedded into EUGENE model: A multicriteria approach," European Journal of Operational Research, Elsevier, vol. 139(2), pages 436-448, June.
    19. Manuel Casal-Guisande & Alberto Comesaña-Campos & Alejandro Pereira & José-Benito Bouza-Rodríguez & Jorge Cerqueiro-Pequeño, 2022. "A Decision-Making Methodology Based on Expert Systems Applied to Machining Tools Condition Monitoring," Mathematics, MDPI, vol. 10(3), pages 1-30, February.
    20. Hugo Díaz & Carlos Guedes Soares, 2021. "A Multi-Criteria Approach to Evaluate Floating Offshore Wind Farms Siting in the Canary Islands (Spain)," Energies, MDPI, vol. 14(4), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:76:y:2021:i:1:d:10.1007_s11235-020-00701-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.