IDEAS home Printed from https://ideas.repec.org/a/spr/telsys/v71y2019i1d10.1007_s11235-018-0506-5.html
   My bibliography  Save this article

Joint remote radio heads and baseband units pool resource scheduling for delay-aware traffic in cloud radio access networks

Author

Listed:
  • Shichao Li

    (Gansu Institute of Political Science and law
    Gansu Institute of Political Science and Law)

  • Qiuyun Wang

    (Gansu Institute of Political Science and law
    Gansu Institute of Political Science and Law)

  • Weigang Kou

    (Gansu Institute of Political Science and law
    Gansu Institute of Political Science and Law)

  • Dengtai Tan

    (Gansu Institute of Political Science and law
    Gansu Institute of Political Science and Law)

Abstract

Due to the centralized signal processing and powerful computational ability, cloud radio access networks (C-RAN) is considered as a promising technique to meet the increasing demand of high-data-rate services of the fifth generation wireless communications. This paper investigates the stochastic optimization problem of C-RAN by joint remote radio heads and baseband units pool resource scheduling to achieve the throughput utility maximization. We formulate a problem to maximize the average throughput utility while stabilizing all processing and transmission queues under the power, subcarrier and computational resources constraints. By utilizing Lyapunov optimization technique, the primal problem can be decomposed into four subproblems. Throughput utility maximization, admission control and computational resource allocation subproblems can be solved easily. For the joint power and subcarrier allocation subproblem, we utilize time-sharing and alternating approaches to obtain a feasible solution. By utilizing the results of four subproblems, a joint admission control and resource allocation (JACRA) algorithm is proposed. The simulation results are provided to show that the total average throughput of JACRA algorithm is increased by 4.02% compared with joint Hungarian and iterative waterfilling (JHIW) algorithm, but the total average backlogs of JACRA algorithm are decreased by 7.04% when the control parameter grows from 1 to 10.

Suggested Citation

  • Shichao Li & Qiuyun Wang & Weigang Kou & Dengtai Tan, 2019. "Joint remote radio heads and baseband units pool resource scheduling for delay-aware traffic in cloud radio access networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 71(1), pages 77-91, May.
  • Handle: RePEc:spr:telsys:v:71:y:2019:i:1:d:10.1007_s11235-018-0506-5
    DOI: 10.1007/s11235-018-0506-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11235-018-0506-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11235-018-0506-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ali Alnoman & Alagan Anpalagan, 2017. "Towards the fulfillment of 5G network requirements: technologies and challenges," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 65(1), pages 101-116, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahrzad Sedaghat & Amir Hossein Jahangir, 2022. "FRT-SDN: an effective firm real time routing for SDN by early removal of late packets," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 80(3), pages 359-382, July.
    2. Juan Riol Martín & Raquel Pérez-Leal & Julio Navío-Marco, 2019. "Towards 5G: Techno-economic analysis of suitable use cases," Netnomics, Springer, vol. 20(2), pages 153-175, December.
    3. Intan Izafina Idrus & Tarik Abdul Latef & Narendra Kumar Aridas & Mohamad Sofian Abu Talip & Yoshihide Yamada & Tharek Abd Rahman & Ismahayati Adam & Mohd Najib Mohd Yasin, 2019. "A low-loss and compact single-layer butler matrix for a 5G base station antenna," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-23, December.
    4. P. M. Deepak & C. K. Ali, 2018. "Filter bank SCFDMA: an efficient uplink strategy for future communication systems," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 69(4), pages 529-543, December.
    5. Yekta Turk & Engin Zeydan & Cemal Alp Akbulut, 2019. "Experimental performance evaluations of CoMP and CA in centralized radio access networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 72(1), pages 115-130, September.
    6. Yuan Zhang, 2020. "Interference graph construction for D2D underlaying cellular networks and missing rate analysis," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 75(4), pages 383-399, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:71:y:2019:i:1:d:10.1007_s11235-018-0506-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.