IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0226499.html
   My bibliography  Save this article

A low-loss and compact single-layer butler matrix for a 5G base station antenna

Author

Listed:
  • Intan Izafina Idrus
  • Tarik Abdul Latef
  • Narendra Kumar Aridas
  • Mohamad Sofian Abu Talip
  • Yoshihide Yamada
  • Tharek Abd Rahman
  • Ismahayati Adam
  • Mohd Najib Mohd Yasin

Abstract

Researchers are increasingly showing interest in the application of a Butler matrix for fifth-generation (5G) base station antennas. However, the design of the Butler matrix is challenging at millimeter wave because of the very small wavelength. The literature has reported issues of high insertion losses and incorrect output phases at the output ports of the Butler matrix, which affects the radiation characteristics. To overcome these issues, the circuit elements of the Butler matrix such as the crossover, the quadrature hybrid and the phase shifter must be designed using highly accurate dimensions. This paper presents a low-loss and compact single-layer 8 × 8 Butler matrix operating at 28 GHz. The optimum design of each circuit element is also demonstrated in detail. The designed Butler matrix was fabricated to validate the simulated results. The measured results showed return losses of less than −10 dB at 28 GHz. The proposed Butler matrix achieved a low insertion loss and a low phase error of ± 2 dB and ± 10°, respectively. In sum, this work obtained a good agreement between the simulated and measured results.

Suggested Citation

  • Intan Izafina Idrus & Tarik Abdul Latef & Narendra Kumar Aridas & Mohamad Sofian Abu Talip & Yoshihide Yamada & Tharek Abd Rahman & Ismahayati Adam & Mohd Najib Mohd Yasin, 2019. "A low-loss and compact single-layer butler matrix for a 5G base station antenna," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-23, December.
  • Handle: RePEc:plo:pone00:0226499
    DOI: 10.1371/journal.pone.0226499
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0226499
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0226499&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0226499?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ali Alnoman & Alagan Anpalagan, 2017. "Towards the fulfillment of 5G network requirements: technologies and challenges," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 65(1), pages 101-116, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahrzad Sedaghat & Amir Hossein Jahangir, 2022. "FRT-SDN: an effective firm real time routing for SDN by early removal of late packets," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 80(3), pages 359-382, July.
    2. Juan Riol Martín & Raquel Pérez-Leal & Julio Navío-Marco, 2019. "Towards 5G: Techno-economic analysis of suitable use cases," Netnomics, Springer, vol. 20(2), pages 153-175, December.
    3. P. M. Deepak & C. K. Ali, 2018. "Filter bank SCFDMA: an efficient uplink strategy for future communication systems," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 69(4), pages 529-543, December.
    4. Yekta Turk & Engin Zeydan & Cemal Alp Akbulut, 2019. "Experimental performance evaluations of CoMP and CA in centralized radio access networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 72(1), pages 115-130, September.
    5. Yuan Zhang, 2020. "Interference graph construction for D2D underlaying cellular networks and missing rate analysis," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 75(4), pages 383-399, December.
    6. Shichao Li & Qiuyun Wang & Weigang Kou & Dengtai Tan, 2019. "Joint remote radio heads and baseband units pool resource scheduling for delay-aware traffic in cloud radio access networks," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 71(1), pages 77-91, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0226499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.