IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v65y2024i8d10.1007_s00362-024-01576-8.html
   My bibliography  Save this article

A distance based two-sample test of means difference for multivariate datasets

Author

Listed:
  • Alexander Novoselsky

    (Weizmann Institute of Science)

  • Eugene Kagan

    (Ariel University)

Abstract

In the paper we present a new test for comparison of the means of multivariate samples with unknown distributions. The test is based on the comparison of the distributions of the distances between the samples’ elements and their means using univariate two-sample Kolmogorov–Smirnov test. The activity of the suggested method is illustrated by numerical analysis of the real-world and simulated data.

Suggested Citation

  • Alexander Novoselsky & Eugene Kagan, 2024. "A distance based two-sample test of means difference for multivariate datasets," Statistical Papers, Springer, vol. 65(8), pages 4861-4874, October.
  • Handle: RePEc:spr:stpapr:v:65:y:2024:i:8:d:10.1007_s00362-024-01576-8
    DOI: 10.1007/s00362-024-01576-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-024-01576-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-024-01576-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiu, Zhiping & Chen, Jianwei & Zhang, Jin-Ting, 2021. "Two-sample tests for multivariate functional data with applications," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    2. Yujun Wu & Marc G. Genton & Leonard A. Stefanski, 2006. "A Multivariate Two-Sample Mean Test for Small Sample Size and Missing Data," Biometrics, The International Biometric Society, vol. 62(3), pages 877-885, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reza Modarres, 2024. "Hotelling $$T^2$$ T 2 test in high dimensions with application to Wilks outlier method," Statistical Papers, Springer, vol. 65(8), pages 5203-5218, October.
    2. Banerjee, Bilol, 2024. "Testing distributional equality for functional random variables," Journal of Multivariate Analysis, Elsevier, vol. 203(C).
    3. Dong, Kai & Pang, Herbert & Tong, Tiejun & Genton, Marc G., 2016. "Shrinkage-based diagonal Hotelling’s tests for high-dimensional small sample size data," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 127-142.
    4. Zongliang Hu & Tiejun Tong & Marc G. Genton, 2019. "Diagonal likelihood ratio test for equality of mean vectors in high‐dimensional data," Biometrics, The International Biometric Society, vol. 75(1), pages 256-267, March.
    5. Qiu, Zhiping & Fan, Jiangyuan & Zhang, Jin-Ting & Chen, Jianwei, 2024. "Tests for equality of several covariance matrix functions for multivariate functional data," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    6. Cristhian Leonardo Urbano-Leon & Manuel Escabias, 2022. "Comparison of Positivity in Two Epidemic Waves of COVID-19 in Colombia with FDA," Stats, MDPI, vol. 5(4), pages 1-11, October.
    7. Xianzheng Huang, 2009. "Diagnosis of Random-Effect Model Misspecification in Generalized Linear Mixed Models for Binary Response," Biometrics, The International Biometric Society, vol. 65(2), pages 361-368, June.
    8. Zhang, Jin-Ting & Zhu, Tianming, 2022. "A new normal reference test for linear hypothesis testing in high-dimensional heteroscedastic one-way MANOVA," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    9. Sexton, Joseph & Blomhoff, Rune & Karlsen, Anette & Laake, Petter, 2012. "Adaptive combination of dependent tests," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1935-1943.
    10. Xiao Min & Chen Ting & Huang Kunpeng & Ming Ruixing, 2020. "Optimal Estimation for Power of Variance with Application to Gene-Set Testing," Journal of Systems Science and Information, De Gruyter, vol. 8(6), pages 549-564, December.
    11. Ouyang, Yanyan & Liu, Jiamin & Tong, Tiejun & Xu, Wangli, 2022. "A rank-based high-dimensional test for equality of mean vectors," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    12. Zhang, Liang & Zhu, Tianming & Zhang, Jin-Ting, 2020. "A Simple Scale-Invariant Two-Sample Test for High-dimensional Data," Econometrics and Statistics, Elsevier, vol. 14(C), pages 131-144.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:65:y:2024:i:8:d:10.1007_s00362-024-01576-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.