IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v65y2024i7d10.1007_s00362-024-01578-6.html
   My bibliography  Save this article

Dimension reduction-based adaptive-to-model semi-supervised classification

Author

Listed:
  • Xuehu Zhu

    (Xi’an Jiaotong University)

  • Rongzhu Zhao

    (Xi’an Jiaotong University)

  • Dan Zeng

    (Xi’an Jiaotong University)

  • Qian Zhao

    (Xi’an Jiaotong University)

  • Jun Zhang

    (Shenzhen University)

Abstract

This paper introduces a novel Dimension Reduction-based Adaptive-to-model Semi-supervised Classification method, specifically designed for scenarios where the number of unlabeled samples significantly exceeds that of labeled samples. Leveraging the strengths of sufficient dimension reduction and non-parametric interpolation, the method significantly amplifies the value derived from unlabeled samples, thus enhancing the precision of the classification model. An iterative version is also presented to extract further insights from the interpolated unlabeled samples. Theoretical analyses and numerical studies demonstrate substantial improvements in classifier accuracy, particularly in the context of model misspecified. The effectiveness of the proposed method in enhancing classification accuracy is further substantiated through two empirical analyses: credit card application evaluations and coronary heart disease diagnostic assessments.

Suggested Citation

  • Xuehu Zhu & Rongzhu Zhao & Dan Zeng & Qian Zhao & Jun Zhang, 2024. "Dimension reduction-based adaptive-to-model semi-supervised classification," Statistical Papers, Springer, vol. 65(7), pages 4631-4675, September.
  • Handle: RePEc:spr:stpapr:v:65:y:2024:i:7:d:10.1007_s00362-024-01578-6
    DOI: 10.1007/s00362-024-01578-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-024-01578-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-024-01578-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seung Jun Shin & Yichao Wu & Hao Helen Zhang & Yufeng Liu, 2014. "Probability-enhanced sufficient dimension reduction for binary classification," Biometrics, The International Biometric Society, vol. 70(3), pages 546-555, September.
    2. Li, Junlan & Wang, Tao, 2021. "Dimension reduction in binary response regression: A joint modeling approach," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    3. Seung Jun Shin & Yichao Wu & Hao Helen Zhang & Yufeng Liu, 2017. "Principal weighted support vector machines for sufficient dimension reduction in binary classification," Biometrika, Biometrika Trust, vol. 104(1), pages 67-81.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Junlan & Wang, Tao, 2021. "Dimension reduction in binary response regression: A joint modeling approach," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    2. Jang, Hyun Jung & Shin, Seung Jun & Artemiou, Andreas, 2023. "Principal weighted least square support vector machine: An online dimension-reduction tool for binary classification," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    3. Wei Luo, 2022. "On efficient dimension reduction with respect to the interaction between two response variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 269-294, April.
    4. Qin Wang & Yuan Xue, 2023. "A structured covariance ensemble for sufficient dimension reduction," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 777-800, September.
    5. Daniel J. Luckett & Eric B. Laber & Samer S. El‐Kamary & Cheng Fan & Ravi Jhaveri & Charles M. Perou & Fatma M. Shebl & Michael R. Kosorok, 2021. "Receiver operating characteristic curves and confidence bands for support vector machines," Biometrics, The International Biometric Society, vol. 77(4), pages 1422-1430, December.
    6. Chong Zhang & Yufeng Liu, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 44-46, March.
    7. Chong Zhang & Yufeng Liu, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 44-46, March.
    8. Hayley Randall & Andreas Artemiou & Xingye Qiao, 2021. "Sufficient dimension reduction based on distance‐weighted discrimination," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1186-1211, December.
    9. Pircalabelu, Eugen & Artemiou, Andreas, 2021. "Graph informed sliced inverse regression," Computational Statistics & Data Analysis, Elsevier, vol. 164(C).
    10. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
    11. Seung Jun Shin & Yichao Wu & Hao Helen Zhang & Yufeng Liu, 2017. "Principal weighted support vector machines for sufficient dimension reduction in binary classification," Biometrika, Biometrika Trust, vol. 104(1), pages 67-81.
    12. Gérard Biau & Clément Levrard, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 41-43, March.
    13. Gérard Biau & Clément Levrard, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 41-43, March.
    14. Lu Li & Niwen Zhou & Lixing Zhu, 2022. "Outcome regression-based estimation of conditional average treatment effect," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(5), pages 987-1041, October.
    15. Timothy I. Cannings & Richard J. Samworth, 2017. "Random-projection ensemble classification," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 959-1035, September.
    16. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
    17. Pircalabelu, Eugen & Artemiou, Andreas, 2020. "The LassoPSVM approach for sufficient dimension reduction using principal projections," LIDAM Discussion Papers ISBA 2020008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:65:y:2024:i:7:d:10.1007_s00362-024-01578-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.