IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v62y2021i4d10.1007_s00362-020-01170-8.html
   My bibliography  Save this article

Adaptive quantile regressions for massive datasets

Author

Listed:
  • Rong Jiang

    (Donghua University)

  • Wei-wei Chen

    (Donghua University)

  • Xin Liu

    (Donghua University)

Abstract

Analysis of massive datasets is challenging owing to limitations of computer primary memory. Adaptive quantile regressions is a robust and efficient estimation method. For computational efficiency, we propose an adaptive smoothing quantile regressions (ASQR). The ASQR method is used to analyze massive datasets. The proposed approach significantly reduces the required amount of primary memory, and the resulting estimate will be as efficient as if the entire data set is analyzed simultaneously. Both simulations and data analysis are conducted to illustrate the finite sample performance of the proposed methods.

Suggested Citation

  • Rong Jiang & Wei-wei Chen & Xin Liu, 2021. "Adaptive quantile regressions for massive datasets," Statistical Papers, Springer, vol. 62(4), pages 1981-1995, August.
  • Handle: RePEc:spr:stpapr:v:62:y:2021:i:4:d:10.1007_s00362-020-01170-8
    DOI: 10.1007/s00362-020-01170-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-020-01170-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-020-01170-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joel L. Horowitz, 1998. "Bootstrap Methods for Median Regression Models," Econometrica, Econometric Society, vol. 66(6), pages 1327-1352, November.
    2. Pang, Lei & Lu, Wenbin & Wang, Huixia Judy, 2012. "Variance estimation in censored quantile regression via induced smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 785-796.
    3. Tian, Yuzhu & Zhu, Qianqian & Tian, Maozai, 2016. "Estimation of linear composite quantile regression using EM algorithm," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 183-191.
    4. Runze Li & Dennis K.J. Lin & Bing Li, 2013. "Statistical inference in massive data sets," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 29(5), pages 399-409, September.
    5. Jiang, Xuejun & Li, Jingzhi & Xia, Tian & Yan, Wanfeng, 2016. "Robust and efficient estimation with weighted composite quantile regression," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 413-423.
    6. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    7. Koenker, Roger, 1984. "A note on L-estimates for linear models," Statistics & Probability Letters, Elsevier, vol. 2(6), pages 323-325, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fengrui Di & Lei Wang, 2022. "Multi-round smoothed composite quantile regression for distributed data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(5), pages 869-893, October.
    2. Firpo, Sergio & Galvao, Antonio F. & Pinto, Cristine & Poirier, Alexandre & Sanroman, Graciela, 2022. "GMM quantile regression," Journal of Econometrics, Elsevier, vol. 230(2), pages 432-452.
    3. Jiang, Rong & Yu, Keming, 2020. "Single-index composite quantile regression for massive data," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    4. Kato, Kengo & F. Galvao, Antonio & Montes-Rojas, Gabriel V., 2012. "Asymptotics for panel quantile regression models with individual effects," Journal of Econometrics, Elsevier, vol. 170(1), pages 76-91.
    5. Fan, Yanqin & Liu, Ruixuan, 2016. "A direct approach to inference in nonparametric and semiparametric quantile models," Journal of Econometrics, Elsevier, vol. 191(1), pages 196-216.
    6. Inanoglu, Hulusi & Jacobs, Michael, Jr. & Liu, Junrong & Sickles, Robin, 2015. "Analyzing Bank Efficiency: Are "Too-Big-to-Fail" Banks Efficient?," Working Papers 15-016, Rice University, Department of Economics.
    7. Yanlin Tang & Xinyuan Song & Zhongyi Zhu, 2015. "Variable selection via composite quantile regression with dependent errors," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(1), pages 1-20, February.
    8. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    9. Kaplan, David M. & Sun, Yixiao, 2017. "Smoothed Estimating Equations For Instrumental Variables Quantile Regression," Econometric Theory, Cambridge University Press, vol. 33(1), pages 105-157, February.
    10. Kyu Hyun Kim & Daniel J. Caplan & Sangwook Kang, 2023. "Smoothed quantile regression for censored residual life," Computational Statistics, Springer, vol. 38(2), pages 1001-1022, June.
    11. Yingying Hu & Huixia Judy Wang & Xuming He & Jianhua Guo, 2021. "Bayesian joint-quantile regression," Computational Statistics, Springer, vol. 36(3), pages 2033-2053, September.
    12. Yang, Jing & Tian, Guoliang & Lu, Fang & Lu, Xuewen, 2020. "Single-index modal regression via outer product gradients," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    13. Jay Dev Dubey, 2021. "Measuring Income Elasticity of Healthcare-Seeking Behavior in India: A Conditional Quantile Regression Approach," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(4), pages 767-793, December.
    14. Escanciano, J.C. & Goh, S.C., 2014. "Specification analysis of linear quantile models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 495-507.
    15. Bonaccolto, G. & Caporin, M. & Gupta, R., 2018. "The dynamic impact of uncertainty in causing and forecasting the distribution of oil returns and risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 446-469.
    16. Yuanshan Wu & Yanyuan Ma & Guosheng Yin, 2015. "Smoothed and Corrected Score Approach to Censored Quantile Regression With Measurement Errors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1670-1683, December.
    17. Galvao, Antonio F. & Kato, Kengo, 2016. "Smoothed quantile regression for panel data," Journal of Econometrics, Elsevier, vol. 193(1), pages 92-112.
    18. White, Halbert & Kim, Tae-Hwan, 2002. "Estimation, Inference, and Specification Testing for Possibly Misspecified Quantile Regression," University of California at San Diego, Economics Working Paper Series qt1s38s0dn, Department of Economics, UC San Diego.
    19. Zhen Yu & Keming Yu & Wolfgang K. Härdle & Xueliang Zhang & Kai Wang & Maozai Tian, 2022. "Bayesian spatio‐temporal modeling for the inpatient hospital costs of alcohol‐related disorders," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 644-667, December.
    20. Yanke Wu & Maozai Tian, 2017. "An effective method to reduce the computational complexity of composite quantile regression," Computational Statistics, Springer, vol. 32(4), pages 1375-1393, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:62:y:2021:i:4:d:10.1007_s00362-020-01170-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.